- PyTorch 深度学习实战(13):Proximal Policy Optimization (PPO) 算法
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了Actor-Critic算法,并使用它解决了CartPole问题。本文将深入探讨ProximalPolicyOptimization(PPO)算法,这是一种更稳定、更高效的策略优化方法。我们将使用PyTorch实现PPO算法,并应用于经典的CartPole问题。一、PPO算法基础PPO是OpenAI提出的一种强化学习算法,旨在解决策略梯度方法中的训练不稳定问题。PPO通过
- 《Natural Actor-Critic》译读笔记
songyuc
笔记
《NaturalActor-Critic》摘要本文提出了一种新型的强化学习架构,即自然演员-评论家(NaturalActor-Critic)。Theactor的更新通过使用Amari的自然梯度方法进行策略梯度的随机估计来实现,而评论家则通过线性回归同时获得自然策略梯度和价值函数的附加参数。本文展示了使用自然策略梯度的actor改进特别有吸引力,因为这些梯度与所选策略表示的坐标框架无关,并且比常规策
- 翻译Deep Learning and the Game of Go(14)第十二章 采用actor-critic方法的强化学习
idol_watch
围棋与深度学习
本章包括:利用优势使强化学习更有效率用actor-critic方法来实现自我提升AI设计和训练Keras的多输出神经网络如果你正在学习下围棋,最好的改进方法之一是让一个水平更高的棋手给你复盘。有时候,最有用的反馈只是指出你在哪里赢棋或输棋。复盘的人可能会给出这样的评论,“你下了30步后已经远远落后了”或“在下了110步后,你有一个获胜的局面,但你的对手在130时扭转了局面。”为什么这种反馈是有帮助
- 强化学习中的关键模型与算法:从Actor-Critic到GRPO
人工智能
强化学习中的关键模型与算法:从Actor-Critic到GRPO强化学习中的Actor-Critic模型是什么?这与生成对抗网络(GANs)十分相似。在生成对抗网络中,生成器和判别器模型在整个训练过程中相互对抗。在强化学习的Actor-Critic模型中,也存在类似的概念:Actor-Critic(A2C、A3C)是一种流行的强化学习架构,它结合了两个组件:Actor(行动者)——学习策略($\p
- LSTM 网络在强化学习中的应用
AI天才研究院
LLM大模型落地实战指南AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSTM网络在强化学习中的应用关键词:LSTM、强化学习、时序依赖、长期记忆、深度Q网络、策略梯度、Actor-Critic摘要:本文深入探讨了长短期记忆(LSTM)网络在强化学习领域的应用。我们将详细介绍LSTM的核心概念、结构和工作原理,以及它如何解决传统循环神经网络面临的长期依赖问题。文章重点分析了LSTM在强化学习中的多种应用场景,包括深度Q网络、策略梯度方法和Actor-Critic架构
- A3C(Asynchronous Advantage Actor-Critic)算法
C7211BA
算法
A3C(AsynchronousAdvantageActor-Critic)是一种强化学习算法,它结合了Actor-Critic方法和异步更新(AsynchronousUpdates)技术。A3C是由GoogleDeepMind提出的,并在许多强化学习任务中表现出色,特别是那些复杂的、需要并行处理的环境。A3C主要解决了传统深度强化学习中的一些问题,如训练稳定性和数据效率问题。A3C算法的关键点A
- 强化学习很多ac架构的算法比如ppo,为什么使用状态价值网络而不使用动作价值网络实现critic呢?|状态价值网络的优势与挑战|Actor-Critic|状态价值|强化学习
concisedistinct
人工智能算法人工智能架构
目录1.强化学习的基础1.1策略与价值函数2.Actor-Critic架构概述2.1Critic的作用3.为什么选择状态价值网络?3.1训练稳定性3.2计算效率3.3高维动作空间的适应性4.使用状态价值网络的挑战4.1收敛速度4.2欠拟合风险5.解决方案与未来方向5.1改进的状态价值网络5.2结合动作价值和状态价值6.结论随着强化学习技术的不断发展,其在诸如游戏、机器人控制和金融预测等领域的应用越
- 强化学习中,为什么用AC架构
资源存储库
算法强化学习算法
目录强化学习中,为什么用AC架构为什么用AC架构?AC架构的工作原理AC架构的优缺点优点:缺点:相关算法:基于AC架构的算法总结强化学习中,为什么用AC架构在强化学习(ReinforcementLearning,RL)中,AC架构(即Actor-Critic架构)是一种非常常用的架构,用于训练智能体(Agent)在环境中执行任务。AC架构结合了策略梯度方法和价值迭代方法,通过分离策略和价值函数的估
- 强化学习分类
0penuel0
Model-free:Qlearning,Sarsa,PolicyGradientsModel-based:能通过想象来预判断接下来将要发生的所有情况.然后选择这些想象情况中最好的那种基于概率:PolicyGradients基于价值:Qlearning,Sarsa两者融合:Actor-Critic回合更新:Monte-carlolearning,基础版的policygradients单步更新:Ql
- latex换行\left[和\right]编译报错-解决方案
还有你Y
论文Latex
简而言之:\\换成\right.\\,&换成&\left.来个例子就知道了:原本的公式是:\begin{align}\label{up_critic}L_Q(\theta)&=\mathbb{E}\left[\frac{1}{2}(Q_\theta(\mathcal{S}_{k,t}^m,{A}_{k,t}^m)-({R}_{k,t}^m\\\nonumber&+\gammaQ_{\bar{\th
- 强化学习(TD3)
sssjjww
强化学习python神经网络深度学习
TD3——TwinDelayedDeepDeterministicpolicygradient双延迟深度确定性策略梯度TD3是DDPG的一个优化版本,旨在解决DDPG算法的高估问题优化点:①双重收集:采取两套critic收集,计算两者中较小的值,从而克制收集过估量成绩。DDPG源于DQN,DQN源于Q_learning,这些算法都是通过估计Q值来寻找最优的策略,在强化学习中,更新Q网络的目标值ta
- 王树森:学 DRL 走过的弯路太多,想让大家避开(文末赠送福利)
人工智能与算法学习
大家都知道,深度强化学习(DeepReinforcementLearning,DRL)就是应用了神经网络的强化学习。而强化学习是机器学习的一个分支,研究如何基于对环境的观测做出决策,以最大化长期回报。从20世纪80年代至今,强化学习一直是机器学习领域的热门研究方向。大家耳熟能详的经典强化学习方法——Q学习、REINFORCE、actor-critic——就是20世纪80年代提出的,一直沿用至今。而
- 深度强化学习 _Actor-Critic 王树森课程笔记
淀粉爱好者
神经网络深度学习机器学习
Actor-CriticMethod一、ValueNetwokandPolicyNetwork1.Policynetwork(Actor):π(a∣s;θ)\pi(a|s;\bm\theta)π(a∣s;θ)2.Valuenetwork(Critic):q(s,a;w)q(s,a;\textbf{w})q(s,a;w)二、训练神经网络1.用TD算法更新价值网络2.用策略梯度算法更新策略网络三、Ac
- 多智能体强化学习--理论与算法
还有你Y
机器学习深度学习强化学习算法
目录标题基础概念MADDPG的actor和critic网络actor网络:**critic网络:**MAPPO的actor和critic网络actor网络:critic网络:QMix(QMIX)VDN(ValueDecompositionNetworks)参考博士论文:基于强化学习的多智能体协同关键技术及应用研究基础概念在单个智能体与部分可观测环境的交互过程一般使用部分可观测马尔可夫决策过程(pa
- 多智能体强化学习--MAPPO(pytorch代码详解)
还有你Y
机器学习深度学习强化学习pytorch人工智能python
标题代码详解Actor和Critic网络的设置代码详解代码链接(点击跳转)Actor和Critic网络的设置基本设置:3个智能体、每个智能体观测空间18维。Actor网络:实例化一个actor对象,input-size是18Critic网络:实例化一个Critic对象,input-size是18x3=54在choose_action调用actor网络的时候,传入的直接是三个智能体的参数,tenso
- 【机器学习】强化学习(八)-深度确定性策略梯度(DDPG)算法及LunarLanderContinuous-v2环境训练示例...
十年一梦实验室
机器学习算法pythonpytorch人工智能
训练效果DDPG算法是一种基于演员-评论家(Actor-Critic)框架的深度强化学习(DeepReinforcementLearning)算法,它可以处理连续动作空间的问题。DDPG算法描述如下:GPT-4TurboCopilotGPT-4DDPG算法伪代码:深度确定性策略梯度(DDPG)算法,用于训练一个智能体解决OpenAIGym中的LunarLanderContinuous-v2环境示例
- 【MAC】Multi-Level Monte Carlo Actor-Critic阅读笔记
酸酸甜甜我最爱
论文代码学习笔记
基本思想:利用多层次蒙特卡洛方法(Multi-LevelMonteCarlo,MLMC)和Actor-Critic算法,解决平均奖励强化学习中的快速混合问题。快速混合?在强化学习中,当我们说一个策略"混合得快",是指该策略在探索和利用之间达到一个良好的平衡,从而使学习过程更快、更有效。提出的背景:现有的强化学习方法在后端使用的是stochasticgradientdescent(随机梯度下降),基
- 【强化学习】QAC、A2C、A3C学习笔记
如果皮卡会coding
强化学习ActorCriticQACA2CA3C
强化学习算法:QACvsA2CvsA3C引言经典的REINFORCE算法为我们提供了一种直接优化策略的方式,它通过梯度上升方法来寻找最优策略。然而,REINFORCE算法也有其局限性,采样效率低、高方差、收敛性差、难以处理高维离散空间。为了克服这些限制,研究者们引入了Actor-Critic框架,它结合了价值函数和策略梯度方法的优点(适配连续动作空间和随机策略),旨在提升学习效率和稳定性。QAC(
- 强化学习13——Actor-Critic算法
beiketaoerge
强化学习算法强化学习
Actor-Critic算法结合了策略梯度和值函数的优点,我们将其分为两部分,Actor(策略网络)和Critic(价值网络)Actor与环境交互,在Critic价值函数的指导下使用策略梯度学习好的策略Critic通过Actor与环境交互收集的数据学习,得到一个价值函数,来判断当前状态哪些动作是好,哪些动作是坏,进而帮Actor进行策略更新。A2C算法AC算法的目的是为了消除策略梯度算法的高仿查问
- 论文笔记(四十)Goal-Auxiliary Actor-Critic for 6D Robotic Grasping with Point Clouds
墨绿色的摆渡人
文章论文阅读
Goal-AuxiliaryActor-Criticfor6DRoboticGraspingwithPointClouds文章概括摘要1.介绍2.相关工作3.学习6D抓握政策3.1背景3.2从点云抓取6D策略3.3联合运动和抓握规划器的演示3.4行为克隆和DAGGER3.5目标--辅助DDPG3.6对未知物体进行微调的后视目标4.实验4.1模拟消融研究(AblationStudiesinSimul
- 强化学习_PPO算法实现Pendulum-v1
¥骁勇善战¥
算法强化学习人工智能
目录PPO算法AC输出连续动作On-policy->Off-policyImportantsamplingIssueofImportanceSamplingAddConstraintPPO代码实现PPO算法PPO(ProximalPolicyOptimization)PPO是基于AC架构的,也就是说,PPO也有两个网络,分别是Actor和Critic,解决了连续动作空间的问题。AC输出连续动作我离
- [强化学习总结6] actor-critic算法
风可。
强化学习强化学习
actor:策略critic:评估价值Actor-Critic是囊括一系列算法的整体架构,目前很多高效的前沿算法都属于Actor-Critic算法,本章接下来将会介绍一种最简单的Actor-Critic算法。需要明确的是,Actor-Critic算法本质上是基于策略的算法,因为这一系列算法的目标都是优化一个带参数的策略,只是会额外学习价值函数,从而帮助策略函数更好地学习。1核心在REINFORCE
- 强化学习DRL--策略学习(Actor-Critic)
还有你Y
机器学习深度学习强化学习学习深度学习神经网络
策略学习的意思是通过求解一个优化问题,学出最优策略函数π(a∣s)\pi(a|s)π(a∣s)或它的近似函数(比如策略网络)。一、策略网络在Atari游戏、围棋等应用中,状态是张量(比如图片),那么应该如图7.1所示用卷积网络处理输入。在机器人控制等应用中,状态s是向量,它的元素是多个传感器的数值,那么应该把卷积网络换成全连接网络。二、策略学习的目标函数状态价值既依赖于当前状态st,也依赖于策略网
- 【强化学习】Actor-Critic
最忆是江南.
强化学习笔记强化学习reinforcementlearning机器学习深度学习神经网络
目录Actor-Critic算法概述可选形式算法流程小结强化学习笔记,内容来自刘建平老师的博客Actor-Critic算法概述Actor-Critic包括两部分:演员(Actor)、评价者(Critic)。其中Actor使用策略函数,负责生成动作(Action)并和环境交互,而Critic使用价值函数,负责评估Actor的表现,并指导Actor下一阶段的动作。在Policy-Gradient中,策
- 强化学习- Actor-Critic 算法
下一个拐角%
强化学习算法python开发语言
提出理由::REINFORCE算法是蒙特卡洛策略梯度,整个回合结束计算总奖励G,方差大,学习效率低。G随机变量,给同样的状态s,给同样的动作a,G可能有一个固定的分布,但是采取采样的方式,本身就有随机性。解决方案:单步更新TD。直接估测G这个随机变量的期望值,拿期望值代替采样的值基于价值的(value-based)的方法Q-learning。Actor-Critic算法,结合策略梯度+时序差分的方
- 深度强化学习Actor-Critic的更新逻辑梳理笔记
hehedadaq
DDPGDRL学习笔记深度强化学习DRL强化学习梯度上升
深度强化学习Actor-Critic的更新逻辑梳理笔记文章目录深度强化学习Actor-Critic的更新逻辑梳理笔记前言:Actor-Critic架构简介:critic的更新逻辑actor的更新逻辑:前言:前几天在给师弟讲actor-critic架构更新逻辑的时候,actor的优化逻辑我卡了好一会儿,最终也没有完整的把逻辑梳理出来,今天刚好趁着脑子清醒,把之前的PPT拿出来,借着PPT的内容,将A
- 深度强化学习——actor-critic算法(4)
Tandy12356_
深度强化学习python人工智能神经网络深度学习机器学习
一、本文概要:actor是策略网络,用来控制agent运动,你可以把他看作是运动员,critic是价值网络,用来给动作打分,你可以把critic看作是裁判,这节课的内容就是构造这两个神经网络,然后通过环境给的奖励来学习这两个网络1、首先看一下如何构造价值网络valuenetwork:Π和QΠ这两个函数我们都不知道,应该怎么办呢?》可以用两个神经网络分别近似这两个函数,然后用actor-critic
- DDPG算法
LENG_Lingliang
Python与强化学习算法pytorch
1.算法原理DDPG算法是Actor-Critic(AC)框架下解决连续动作的一种算法。其本质为深度网络+确定策略梯度(DeterministicPolicyGradient,DPG),之所以叫确定策略梯度,是因为与之前的动作网络不同,其动作网络输出的是一个确定的动作而不是动作概率。王树森老师的课本中框架画的很详细。其本质就是通过优化价值网络使之逼近动作价值函数Qπ(s,a)Q_{\pi}(s,a
- 模型预测控制MPC
oceancoco
pythonpytorch人工智能
第16章模型预测控制16.1简介之前几章介绍了基于值函数的方法DQN、基于策略的方法REINFORCE以及两者结合的方法Actor-Critic。他们都是无模型的方法,即没有建立一个环境模型来帮助智能体决策。而在深度强化学习领域,基于模型的方法通常用神经网络学习一个环境模型,然后利用该环境模型来帮助智能体训练和决策。利用环境模型帮助智能体训练和决策的方法有很多种,例如可以利用与之前的Dyna类似的
- 强化学习的数学原理学习笔记 - Actor-Critic
Green Lv
机器学习笔记强化学习机器学习人工智能深度学习
文章目录概览:RL方法分类Actor-CriticBasicactor-critic/QACA2C(Advantageactor-critic)Off-policyAC重要性采样(ImportanceSampling)Off-policyPGOff-policyACDPG(DeterministicAC)本系列文章介绍强化学习基础知识与经典算法原理,大部分内容来自西湖大学赵世钰老师的强化学习的数学
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交