简单的时间复杂度计算法则

简单算法时间复杂度计算

大O表示法

像前面用O( )来体现算法时间复杂度的记法,我们称之为大O表示法。

算法复杂度可以从最理想情况、平均情况和最坏情况三个角度来评估,由于平均情况大多和最坏情况持平,而且评估最坏情况也可以避免后顾之忧,因此一般情况下,我们设计算法时都要直接估算最坏情况的复杂度。

大O表示法O(f(n)中的f(n)的值可以为1、n、logn、n²等,因此我们可以将O(1)、O(n)、O(logn)、O(n²)分别可以称为常数阶、线性阶、对数阶和平方阶,那么如何推导出f(n)的值呢?我们接着来看推导大O阶的方法。

>推导大O阶

推导大O阶,我们可以按照如下的规则来进行推导,得到的结果就是大O表示法:

1.用常数1来取代运行时间中所有加法常数。

2.修改后的运行次数函数中,只保留最高阶项

3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。

常数阶

```

int sum = 0,n = 100; //执行一次

sum = (1+n)*n/2; //执行一次

System.out.println (sum); //执行一次

```

上面算法的运行的次数的函数为f(n)=3,根据推导大O阶的规则1,我们需要将常数3改为1,则这个算法的时间复杂度为O(1)。如果sum =(1+n)*n/2这条语句再执行10遍,因为这与问题大小n的值并没有关系,所以这个算法的时间复杂度仍旧是O(1),我们可以称之为常数阶。

###线数阶

```

for(int i = 0;i < n ; i++){

//时间复杂度位O(1)的算法

}

```

上面算法循环体中的代码执行了n次,时间复杂度O(n)

###对数阶

```

int number=1;

while(number

number=number*2;

//时间复杂度为O(1)的算法

...

}

```

可以看出上面的代码,随着number每次乘以2后,都会越来越接近n,当number不小于n时就会退出循环。假设循环的次数为X,则由2^x=n得出x=log₂n,因此得出这个算法的时间复杂度为O(logn)。

###平方阶

```

for(int i=0;i

for(int j=0;j

//复杂度为O(1)的算法

...

}

}

```

内层循环的时间复杂度在讲到线性阶时就已经得知是O(n),现在经过外层循环n次,那么这段算法的时间复杂度则为O(n²)。

```

for(int i=0;i

for(int j=i;j

//复杂度为O(1)的算法

...

}

}

```

需要注意的是内循环中int j=i,而不是int j=0。当i=0时,内循环执行了n次;i=1时内循环执行了n-1次,当i=n-1时执行了1次,我们可以推算出总的执行次数为:

n+(n-1)+(n-2)+(n-3)+……+1

=(n+1)+[(n-1)+2]+[(n-2)+3]+[(n-3)+4]+……

=(n+1)+(n+1)+(n+1)+(n+1)+……

=(n+1)n/2

=n(n+1)/2

=n²/2+n/2

根据此前讲过的推导大O阶的规则的第二条:只保留最高阶,因此保留n²/2。根据第三条去掉和这个项的常数,则去掉1/2,最终这段代码的时间复杂度为O(n²)。

其他常见复杂度

除了常数阶、线性阶、平方阶、对数阶,还有如下时间复杂度:

f(n)=nlogn时,时间复杂度为O(nlogn),可以称为nlogn阶。

f(n)=n³时,时间复杂度为O(n³),可以称为立方阶。

f(n)=2ⁿ时,时间复杂度为O(2ⁿ),可以称为指数阶。

f(n)=n!时,时间复杂度为O(n!),可以称为阶乘阶。

f(n)=(√n时,时间复杂度为O(√n),可以称为平方根阶。

常用的时间复杂度按照耗费的时间从小到大依次是:

O(1)

你可能感兴趣的:(简单的时间复杂度计算法则)