- 链表相交问题(双指针法)(java和c语言)
野犬寒鸦
链表c语言算法java
问题描述给你两个单链表的头节点headA和headB,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回null。方法:双指针一种高效的方法是使用两个指针,分别从两个链表的头部开始遍历。当一个指针到达链表末尾时,它切换到另一个链表的头部继续遍历。如果两个链表相交,那么这两个指针一定会在某一点相遇,这个相遇点就是相交的起始节点。实现思路初始化两个指针:分别指向链表A和链表B的头节点。
- AI学习指南Ollama篇-Ollama简介
俞兆鹏
AI学习指南人工智能ollama
一、定义大语言模型(LLM)是一种基于深度学习的自然语言处理模型,能够生成文本、回答问题、翻译语言、撰写代码等。这些模型通过海量的文本数据进行训练,学习语言的模式和结构,从而能够生成自然流畅的文本内容。随着技术的不断进步,大语言模型在各个领域都展现出了巨大的潜力。二、应用场景大语言模型的应用场景非常广泛,以下是一些常见的例子:聊天机器人:通过自然语言理解与生成,为用户提供智能对话服务。内容创作:帮
- 【window批处理文件快速入门学习--这份文档就够了】
少年近视
批处理adb学习batch
一、简介1.1什么是批处理文件?批处理文件(BatchFile)是一种包含一系列DOS命令的文本文件,通常用于自动化重复性任务。文件的扩展名为.bat或.cmd,当在命令提示符下运行时,操作系统会按顺序执行文件中的命令。批处理文件的创建和使用为用户提供了高效的命令行操作方式。示例:创建一个简单的批处理文件,文件名为example.bat,内容如下:@echooffecho这是一个简单的批处理文件。
- 《Effective Java》学习笔记——第7部分并发
Suwg209
EffectiveJava最佳实践笔记java学习笔记
文章目录一、前言二、并发最佳实践1.优先使用现有的并发库2.避免共享可变数据3.最小化锁的持有时间4.使用合适的同步策略5.使用volatile变量来避免缓存问题6.避免死锁7.使用ExecutorService管理线程8.优先使用无锁并发工具三、小结一、前言《EffectiveJava》第7部分“并发”介绍了如何编写高效、安全的多线程程序。随着多核处理器的普及,Java的并发编程变得更加重要。本
- 《Effective Java》学习笔记--第3部分 方法设计和实现最佳实践
Suwg209
EffectiveJava最佳实践笔记java学习笔记
文章目录第3部分方法设计和实现一、前言二、方法设计和实现最佳实践1.方法的参数要尽量少2.避免使用过多的返回值3.避免在方法中返回null4.方法要尽量做到单一职责5.使用合适的访问修饰符6.避免方法内部的过多的条件分支7.使用适当的异常处理8.考虑方法的线程安全性三、小结第3部分方法设计和实现一、前言《EffectiveJava》共有多个章节,每个章节提供了若干条建议或最佳实践,整理了对应章节关
- Java多线程之线程通信
心情阿少
java开发语言
线程通信通过synchronized关键字,可保证线程在执行的过程中不会被其他线程打断,但无法保证线程的执行次序。比如上述案例中,我们可以保证t1线程输出"好好学习"时,不会被t2线程打断,但无法保证t1、t2两个线程执行的次序。如果想要控制线程输出次序,则需要学习线程通信技术。1)概念理解线程间通信:多个线程并发执行时,在默认情况下CPU是随机切换线程的,当我们需要多个线程来共同完成一件任务,并
- ESP32-S3模组上跑通esp32-camera(30)
蓝天居士
ESP32-S3ESP32-S3camerasensorOV5640
接前一篇文章:ESP32-S3模组上跑通esp32-camera(29)一、OV5640初始化2.相机初始化及图像传感器配置上一回解析完了camera_probe函数的第6段代码,本回继续往下解析该函数后续内容。为了便于理解和回顾,再次贴出camera_probe函数源码,在components/esp32-camera/driver/esp_camera.c中,如下:staticesp_err_
- Java开发高频英语单词800+,熟悉后英文障碍又少了
万小猿En
程序员英语学习指北javajava英语英文单词语法
高频词就是出现频率很高的单词,它们是我用软件从JavaAPI中常用的5个包(lang,util,io,net,sql)整理的,涉及的文档有1702个。单词的意思大多不是通用的,已经选取了计算机软件开发语境下的含义。你可能也发现了,翻译过来的JavaAPI文档有些表述不好理解或信息有损耗,所以不如直接看英文版JavaAPI文档,而这些高频词可以帮到你。学习建议:熟悉的快速过,不熟悉的多记一下。序号频
- Direct Preference Optimization (DPO): 一种无需强化学习的语言模型偏好优化方法
Yuleave
论文学习语言模型人工智能自然语言处理
论文地址:https://arxiv.org/pdf/2305.182901.背景与挑战近年来,大规模无监督语言模型(LM)在知识获取和推理能力方面取得了显著进展,但如何精确控制其行为仍是一个难题。现有的方法通常通过**强化学习从人类反馈(RLHF)**来引导模型行为,但RLHF存在以下问题:复杂性高:RLHF需要先训练一个奖励模型来反映人类偏好,然后使用强化学习来微调语言模型,使其在最大化奖励的
- JS在HTML页面内动态创建SVG元素
一粒马豆
html5JavaScript数据可视化SVGJSD3WEB
最近在学习数据可视化,深入了解了如何在网页上实现数据的动态可视化。比如D3.JS主要应用JS在HTML页面内动态生成SVG元素并绑定数据。以下是我的例程://通过createElementNS创建svg元素并设置属性varsvg=document.createElementNS('http://www.w3.org/2000/svg','svg');svg.setAttribute("style"
- 推荐洛谷网站:全面解析与实用指南
w(゚Д゚)w吓洗宝宝了
c++c语言javac#python
洛谷(Luogu)是中国领先的在线编程学习和竞赛平台,自成立以来,已经成为许多编程爱好者的首选平台。洛谷不仅提供了丰富的编程题目和资源,还支持多种编程语言,并且拥有活跃的社区氛围。本文将详细介绍洛谷的核心功能、使用技巧以及推荐理由,帮助你更好地利用洛谷进行编程学习和竞赛训练。一、洛谷的核心功能1.题库与练习洛谷拥有庞大的题库,涵盖了从入门到高级的各种难度级别的题目。这些题目不仅覆盖了基础算法,还包
- 【Python高阶篇】探索人工智能:使用Python构建一个简单的聊天机器人
码农必胜客
python人工智能机器人
人工智能是计算机科学中一个非常热门的领域,近年来得到了越来越多的关注。它通过模拟人类思考过程和智能行为来实现对复杂任务的自主处理和学习,已经被广泛应用于许多领域,包括语音识别、自然语言处理、机器人技术、图像识别和推荐系统等。本文将介绍如何使用Python构建一个简单的聊天机器人,以展示人工智能的基本原理和应用。我们将使用Python语言和自然语言处理库来构建一个聊天机器人,该机器人可以接收用户的输
- 学习TypeScript(一)
家里有只小肥猫
学习typescriptjavascript
Ts静态类型可以直接在编译器进行类型检查js动态类型在代码执行期的时候才会进行类型检查好处优势程序中任何位置的代码都会有错误提示,避免浪费时间提高维护性让代码重构更容易只需要修改类型就可以全局安装打开cmd电脑全局安装npmi-gtypescript检查是否安装成功tsc-vTypeScript入门教程1.安装TypeScriptnpminstall-gtypescript2.创建TypeScri
- 深度ResUnet与ResUnet++:新一代的语义分割神器
倪澄莹George
深度ResUnet与ResUnet++:新一代的语义分割神器去发现同类优质开源项目:https://gitcode.com/在这个数据驱动的时代,深度学习模型在图像处理领域展现出了强大的潜力,尤其是在语义分割任务中。今天,我们向您推荐一个基于PyTorch实现的开源项目——DeepResUnet和ResUnet++。这两个模型源自于学术界的最新研究,旨在提高图像分割的准确性和效率。项目介绍这个开源
- 学习ASP.NET Core的身份认证(基于JwtBearer的身份认证9)
gc_2299
网页编程JwtBear身份认证
测试数据库中只有之前记录温湿度及烟雾值的表中数据较多,在该数据库中增加AppUser表,用于登录用户身份查询,数据库表如下所示: 项目中安装SqlSugarCore包,然后修改控制器类的登录函数及分页查询数据函数,将之前函数中的固定数据修改为从数据库中查询数据,并将分页查询数据函数中返回数据集合修改为返回环境检测数据的集合,主要调整的代码如下所示。客户端页面中的JavaScript代码主要修
- 医学类 使用TransUNet、UNet、DeepLabV3+、HRNet、PSPNet 模型对息肉分割数据集进行训练、评估和可视化 EDD2020息肉数据集分割数据集
计算机C9硕士_算法工程师
数据集语义分割医学类数据集语义分割息肉TransUNetUNet
息肉数据集/息肉瘤分割项目解决(已处理好:EDD2020数据集(EndoscopyDiseaseDetectionandSegmentationChallenge)该息肉分割数据集主要包含人体生长的(肠胃)息肉用于器官内部息肉瘤分割,息肉目标检测,息肉定位任务息肉分割是一个重要的医学影像分析任务,特别是在内窥镜检查中。EDD2020数据集是一个很好的起点。我们将使用几种流行的深度学习模型(如Tra
- 单片机基础模块学习——数码管(二)
promising-w
单片机单片机嵌入式硬件蓝桥杯
一、数码管模块代码这部分包括将数码管想要显示的字符转换成对应段码的函数,另外还包括数码管显示函数值得注意的是对于小数点和不显示部分的处理方式由于小数点没有单独占一位,所以这里用到了两个变量i,j用于跳过小数点导致的占据其他字符显示在数码管上的位置不想让某一位数码管显示的时候,用空格来代替,根据共阳数码管原理图,应将P0引脚全部设为高电平才可熄灭#include"seg.h"//段码转换函数//0x
- Effective C++ 规则43:学习处理模板化基类内的名称
哎呦,帅小伙哦
C++c++
1、背景在C++中,模板化基类为我们提供了强大的灵活性。然而,模板化基类的名称查找却经常会引发困惑,甚至导致编译错误。这是因为模板的名称查找规则与普通类不同。在普通类中,派生类可以直接访问基类的成员变量和成员函数,因为这些名称在编译时是确定的。然而,在模板化基类中,由于基类的定义依赖于模板参数,其成员的名称查找需要更多的信息来完成。如果派生类也是模板类,那么基类的成员名称只有在模板参数确定之后才能
- Python | 基于支持向量机(SVM)的图像分类案例
python收藏家
python机器学习python机器学习
支持向量机(SVM)是一种监督机器学习算法,可用于分类和回归任务。在本文中,我们将重点关注使用SVM进行图像分类。当计算机处理图像时,它将其视为二维像素阵列。数组的大小对应于图像的分辨率,例如,如果图像是200像素宽和200像素高,则数组的尺寸为200x200x3。前两个维度分别表示图像的宽度和高度,而第三个维度表示RGB颜色通道。数组中的值范围为0到255,表示每个点处像素的强度。为了使用SVM
- Python生成成绩报告单:从理论到实践
Tech Synapse
python开发语言
在教育信息化日益普及的今天,自动化生成和处理学生成绩报告单已成为学校和教育机构的一项重要任务。Python作为一种功能强大且易于学习的编程语言,非常适合用于这种数据处理和报告生成任务。本文将详细介绍如何使用Python生成成绩报告单,包括理论概述和完整的代码示例。一、理论概述1.数据存储与处理生成成绩报告单的第一步是存储和处理学生成绩数据。常见的数据存储方式包括CSV文件、Excel文件和数据库。
- Redis学习笔记
csdn_bobo_6
redis学习数据库
认识NoSQLNoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,特别是大数据应用难题。NoSQL特点方便扩展(
- CTF学习笔记——[ACTF2020 新生赛]BackupFile
Obs_cure
网络安全
一、[ACTF2020新生赛]BackupFile1.题目2.解题步骤看了一眼源码什么都没有。难道要暴力扫目录?先试试flag.php阿这还真有…但是还是什么都没有显示。再试试index.php的备份呢?备份有点东西。审计一下发现是弱类型。这段源码的大意就是输入一个key变量,如果key=str(123ffwsfwefwf24r2f32ir23jrw923rskfjwtsw54w3),那么打印fl
- L8打卡学习笔记
无涯学徒1998
学习笔记支持向量机
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊SVM与集成学习SVMSVM线性模型SVM非线性模型SVM常用参数集成学习随机森林导入数据查看数据信息数据分析随机森林模型预测结果结果分析个人总结SVM超平面:SVM在特征空间中寻找一个能够最大化类别间隔的超平面,称为最大间隔超平面。这个超平面就是将数据集分成不同类别的边界。支持向量:支持向量是离分隔超平面最近的样本点,它们决定了超平面的
- P5学习笔记
无涯学徒1998
pythonpytorch
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊运动鞋品牌识别设置GPU导入数据构建CNN模型编写训练函数编写测试函数设置动态学习率等间隔动态调整自定义调整多间隔调整余弦退火正式训练结果可视化使用模型进行预测个人总结设置GPUimporttorchimporttorch.nnasnnimporttorchvision.transformsastransformsimporttorchv
- 【学习笔记】昇思25天学习打卡(D14)CV05-SSD目标检测.ipynb
UnseenMe
昇思学习笔记目标检测
SSD目标检测模型简介SSD,全称SingleShotMultiBoxDetector,是WeiLiu在ECCV2016上提出的一种目标检测算法。使用NvidiaTitanX在VOC2007测试集上,SSD对于输入尺寸300x300的网络,达到74.3%mAP(meanAveragePrecision)以及59FPS;对于512x512的网络,达到了76.9%mAP,超越当时最强的FasterRC
- 【gopher的java学习笔记】一文讲懂controller,service,mapper,entity是什么
ThisIsClark
gopher的java学习笔记java学习笔记
刚开始上手Java和Spring时,就被controller,service,mapper,entity这几个词搞懵了,搞不懂这些究竟代表什么,感觉使用golang开发的时候也没太接触过这些名词啊~经过两三个月的开发后,逐渐搞懂了这几个词的意义,也对为什么要这么分有了一点见解,总结了一下希望能帮到各位刚刚接触Java和Spring的同学。组件介绍Entity(实体)作用:代表数据库中的表结构,是数
- Linux网关开发系列:从基础到进阶的完整解析
无数碎片寻妳
linux网关linuxjava服务器
《Linux网关开发系列:从基础到进阶的完整解析》01-面试大保健-Linux-线程和进程1.异步IO与同步IO的区别在了解异步IO和同步IO之前,首先需要明白什么是IO。IO指的是输入输出操作,比如从硬盘读取文件或将数据写入硬盘。接下来我们会讨论两者的区别。1.1同步IO同步IO操作意味着在请求IO操作时,调用的线程会被阻塞,直到操作完成。在文件读取的例子中,线程需要等待文件完全读取才能继续进行
- 深度学习中高斯噪声:为什么以及如何使用
小白学视觉
深度学习人工智能
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达来源:DeepHubIMBA本文约1800字,建议阅读8分钟高斯噪声是深度学习中用于为输入数据或权重添加随机性的一种技术。在数学上,高斯噪声是一种通过向输入数据添加均值为零和标准差(σ)的正态分布随机值而产生的噪声。正态分布,也称为高斯分布,是一种连续概率分布,由其概率密度函数(PDF)定义:pdf(x)=(1/(σ*sqrt(
- 配置cri-docker使kubernetes1.24以docker作为运行时
萌褚
Linux
镜像下载、域名解析、时间同步请点击阿里云开源镜像站从kubernetes1.24开始,dockershim已经从kubelet中移除,但因为历史问题docker却不支持kubernetes主推的CRI(容器运行时接口)标准,所以docker不能再作为kubernetes的容器运行时了,即从kubernetesv1.24开始不再使用docker了。但是如果想继续使用docker的话,可以在kubel
- 深度强化学习在高频交易中的动态策略优化与收益提升
二进制独立开发
非纯粹GenAIGenAI与Pythonpython人工智能神经网络自然语言处理生成对抗网络金融数据挖掘
文章目录1.高频交易的核心挑战与强化学习的适应性1.1高频交易中的核心问题1.2强化学习的适配性分析2.基于深度Q网络(DQN)的高频交易策略设计2.1状态空间构建:从LOB到特征工程2.2动作空间与奖励函数设计2.3DQN模型架构与训练优化3.业务视角下的策略优化与风险管理3.1策略有效性验证3.2实时部署与延迟优化3.3合规与伦理考量4.实验:基于NASDAQLOB数据的策略对比4.1数据集与
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理