- 十大机器学习算法-梯度提升决策树(GBDT)
zjwreal
机器学习GBDT机器学习梯度提升提升树梯度提升决策树
简介梯度提升决策树(GBDT)由于准确率高、训练快速等优点,被广泛应用到分类、回归合排序问题中。该算法是一种additive树模型,每棵树学习之前additive树模型的残差。许多研究者相继提出XGBoost、LightGBM等,又进一步提升了GBDT的性能。基本思想提升树-BoostingTree以决策树为基函数的提升方法称为提升树,其决策树可以是分类树或者回归树。决策树模型可以表示为决策树的加
- AdaBoost算法(AdbBoost Algorithm)—有监督学习方法、非概率模型、判别模型、非线性模型、非参数化模型、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习提升方法AdaBoost
定义输入:训练数据集T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}T={(x1,y1),(x2,y2),⋯,(xN,yN)},其中,xi∈χ⊆Rn,yi∈y={−1,+1}x_i\in\chi\subseteqR^n,y_i\in{\tty}=\{-1,+1\}xi∈χ⊆Rn,yi∈y={−1,+1}
- 《机器学习》—— XGBoost(xgb.XGBClassifier) 分类器
张小生180
机器学习人工智能
文章目录一、XGBoost分类器的介绍二、XGBoost(xgb.XGBClassifier)分类器与随机森林分类器(RandomForestClassifier)的区别三、XGBoost(xgb.XGBClassifier)分类器代码使用示例一、XGBoost分类器的介绍XGBoost分类器是一种基于梯度提升决策树(GradientBoostingDecisionTree,GBDT)的集成学习算
- 基于Python的机器学习系列(17):梯度提升回归(Gradient Boosting Regression)
会飞的Anthony
人工智能信息系统机器学习机器学习python回归
简介梯度提升(GradientBoosting)是一种强大的集成学习方法,类似于AdaBoost,但与其不同的是,梯度提升通过在每一步添加新的预测器来减少前一步预测器的残差。这种方法通过逐步改进模型,能够有效提高预测准确性。梯度提升回归的工作原理在梯度提升回归中,我们逐步添加预测器来修正模型的残差。以下是梯度提升的基本步骤:初始化模型:选择一个初始预测器h0(x),计算该预测器的预测值。计算残差:
- 基于Python的机器学习系列(16):扩展 - AdaBoost
会飞的Anthony
信息系统机器学习人工智能python机器学习开发语言
简介在本篇中,我们将扩展之前的AdaBoost算法实现,深入探索其细节并进行一些修改。我们将重点修复代码中的潜在问题,并对AdaBoost的实现进行一些调整,以提高其准确性和可用性。1.修复Alpha计算中的问题在AdaBoost中,如果分类器的错误率e为0,则计算出的权重α将是未定义的。为了解决这个问题,我们可以在计算过程中向分母中添加一个非常小的值,以避免除零错误。2.调整学习率sklearn
- 基于CNN-BiLSTM-Adaboost风电功率预测研究(Matlab代码实现)
创新优化代码学习
cnnmatlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、研究方法1.数据准备与预处理2.CNN特征提取3.BiLSTM序列建模4.Adaboost集成学习5.模型训练与评估三、研究优势四、未来展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系
- 【KELM回归预测】基于麻雀算法优化核极限学习SSA-KELM-Adaboost实现风电回归预测附matlab代码
天天酷科研
粉丝福利算法回归学习SSA-KELM-Ada
以下是使用麻雀算法优化核极限学习机(SSA-KELM)和Adaboost算法实现风电回归预测的MATLAB代码示例:matlab复制%导入风电数据load(‘wind_data.mat’);%假设数据存储在wind_data.mat文件中X=wind_data(:,1:end-1);%输入特征Y=wind_data(:,end);%输出标签%数据归一化X=normalize(X,‘range’);
- 每天一个数据分析题(五百零五)- 提升方法
跟着紫枫学姐学CDA
数据分析题库数据分析
提升方法(Boosting),是一种可以用来减小监督式学习中偏差的机器学习算法。基于Boosting的集成学习,其代表算法不包括?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据
- 每天一个数据分析题(五百零六)- 装袋方法
跟着紫枫学姐学CDA
数据分析数据挖掘
装袋方法(bagging)也叫做bootstrapaggregating,是在原始数据集有放回地重采样S次后得到新数据集的一种技术,其代表算法有?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专
- 每天一个数据分析题(二百二十)
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
在集成学习的GBDT算法中,每次训练新的决策树的目的是()?A.预测原始数据的标签B.预测上一个模型的残差C.降低模型的偏差D.降低模型的方差题目来源于CDA模拟题库点击此处获取答案
- (十六)梯度提升树--回归和分类的算法(gbdt))
羽天驿
一、GBDT算法中有两个值,一个预测值,一个真实值,梯度提升树,减小残差,使梯度减小。梯度提升回归树,裂分条件是:MSE均方误差是真实值,预测值梯度提升回归树,划分指标mse算法示例mse.pngfor循环,计算所有的裂分方式的mse,找变化最大的,作为裂分条件!!!为什么变化最大,最好的裂分条件???因为,变化大,我们将相似的数据划归到相同的组中。梯度提升树--gradientBoostingD
- R-CNN、Fast R-CNN、Faster R-CNN实现
今 晚 打 老 虎
面试之CV基础知识深度学习点滴
R-CNN:传统的目标检测算法:使用穷举法(不同大小比例的滑窗)进行区域选择,时间复杂度高对提取的区域进行特征提取(HOG或者SIFT),对光照、背景等鲁棒性差使用分类器对提取的特征进行分类(SVM或Adaboost)R-CNN的过程:采用SelectiveSearch生成类别独立的候选区域使用AlexNet来提取特征,输入是227*227*3,输出是4096将4096维的特征向量送入SVM来分类
- Task 11 XGBoost 算法分析与案例调参实例
沫2021
1.XGBoost算法XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。XGBoost是一个优化的分布式梯度增强库,旨在实现高效,灵活和便携。它在GradientBoosting框架下实现机器学习算法。XGBoost提供了并行树提升(也称为GBDT,GBM),可以快速
- GBDT算法的升级--XGBoost与LightGBM算法
CquptDJ
数据挖掘机器学习机器学习算法数据挖掘人工智能大数据
本文同样不涉及公式推导及代码,对于GBDT算法的学习可以参考前面的文章GBDT算法原理,这里不再讲述GBDT,只讲述XGBoost与LightGBM算法原理下面推荐两篇写得最权威最官方(没有之一)的文档参考文档:XGBoost官方文档(全英文)LightGBM官方文档(全英文)关于GBDT算法,优点非常多,可以算是将boosting的思想发挥到了极致,处理许多数据效果都是非常好,但是正所谓人无完人
- 梯度提升树系列9——GBDT在多任务学习中的应用
theskylife
数据挖掘学习数据挖掘机器学习python人工智能
目录写在开头1.多任务学习的基础知识1.1多任务学习的概念和优势1.1.1概念1.1.2优势1.2GBDT在多任务学习中的角色1.2.1GBDT的基本原理1.2.2GBDT在多任务学习中的应用2.实际应用案例和最佳实践2.1如何设计多任务学习模型2.2成功案例分享2.2.1推荐系统2.2.2金融风控2.2.3自然语言处理(NLP)3.挑战与解决方案3.1面临的技术挑战和解决策略3.1.1挑战1:任
- XGBoost算法
小森( ﹡ˆoˆ﹡ )
机器学习算法算法人工智能机器学习
XGBoost在机器学习中被广泛应用于多种场景,特别是在结构化数据的处理上表现出色,XGBoost适用于多种监督学习任务,包括分类、回归和排名问题。在数据挖掘和数据科学竞赛中,XGBoost因其出色的性能而被频繁使用。例如,在Kaggle平台上的许多获奖方案中,XGBoost都发挥了重要作用。此外,它在处理缺失值和大规模数据集上也有很好的表现。XGBoost是一种基于梯度提升决策树(GBDT)的算
- 机器学习系列(8)——提升树与GBDT算法
陌简宁
机器学习
本文介绍提升树模型与GBDT算法。0x01、提升树模型提升树是以分类树或回归树为基本分类器的提升方法。提升树被认为是统计学习中性能最好的方法之一。提升方法实际采用加法模型(即基函数的线性组合)与前向分步算法,以决策树为基函数的提升方法称为提升树(boostingtree)。对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。提升树模型可以表示为决策树的加法模型:其中,表示决策树,为决策树的
- GBDT--梯度提升树
吓得我泰勒都展开了
机器学习决策树算法
目录一梯度提升树的基本思想1梯度提升树pkAdaBoost2GradientBoosting回归与分类的实现二梯度提升树的参数1迭代过程1.1初始预测结果0的设置1.2使用回归器完成分类任务1.3GBDT的8种损失函数2弱评估器结构2.1梯度提升树种的弱评估器复杂度2.2弗里德曼均方误差3梯度提升树的提前停止机制4梯度提升树的袋外数据5缺失参数class_weight与n_jobs三梯度提升树的参
- 集成学习——梯度提升树(GBDT)
wxw_csdn
机器学习集成学习GBDT梯度提升树sklearn
集成学习——梯度提升树(GBDT)1模型算法介绍2sklearn中的实现3参考资料1模型算法介绍GBDT也是集成学习Boosting家族的成员,通过采用加法模型,不断减小训练过程中产生的残差算法。即通过多轮迭代,每轮迭代生成一个弱分类器,并在上一轮分类器残差的基础上进行训练,但是弱学习器限定了只能使用CART回归树模型,且迭代思路与Adaboost(利用前一轮迭代弱学习器的误差率来更新训练集的权重
- 梯度提升树系列7——深入理解GBDT的参数调优
theskylife
数据分析数据挖掘人工智能数据挖掘机器学习python分类
目录写在开头1.GBDT的关键参数解析1.1学习率(learningrate)1.2树的数量(n_estimators)1.3树的最大深度(max_depth)1.4叶子节点的最小样本数(min_samples_leaf)1.5特征选择的比例(max_features)1.6最小分裂所需的样本数(min_samples_split)1.7子采样比例(subsample)1.8损失函数(loss)1
- 学习笔记 ——GBDT(梯度提升决策树)
dastu
数据挖掘机器学习数据挖掘
一.前言GBDT(GradientBoostingDecisionTree)梯度提升决策树,通过多轮迭代生成若干个弱分类器,每个分类器的生成是基于上一轮分类结果来进行训练的。GBDT使用的也是前向分布算法,这一点和Adaboost类似,但不同的是,GBDT的弱分类器一般为Cart回归树(Adaboost一般不做限制)。这里之所以用回归树的原因是GBDT是利用残差逼近,是累加选择,这就和回归输出的连
- datawhale 10月学习——树模型与集成学习:梯度提升树
SheltonXiao
学习集成学习机器学习决策树
前情回顾决策树CART树的实现集成模式两种并行集成的树模型AdaBoost结论速递本次学习了GBDT,首先了解了用于回归的GBDT,将损失使用梯度下降法进行减小;用于分类的GBDT要稍微复杂一些,需要对分类损失进行定义。学习了助教提供的代码。目录前情回顾结论速递1用于回归的GBDT1.1原理1.2代码实现2用于分类的GBDT2.1原理2.2代码实现1用于回归的GBDT1.1原理与AdaBoost类
- 梯度提升树系列8——GBDT与其他集成学习方法的比较
theskylife
数据挖掘集成学习机器学习人工智能数据挖掘
目录写在开头1.主要集成学习算法对比1.1GBDT1.2随机森林1.3AdaBoost1.4整体对比2.算法性能的比较分析2.1准确率与性能2.2训练时间和模型复杂度2.3应用实例和案例研究3.选择合适算法的标准3.1数据集的特性3.1.1数据规模与维度3.1.2数据质量3.2性能需求3.2.1准确性3.2.2泛化能力3.3训练效率与资源3.3.1训练时间3.3.2计算资源3.4易用性与调参3.4
- Task10-向前分布算法和梯度提升决策树
沫2021
1.前向分步算法前项分布算法可以解决分类问题,也可以解决回归问题。(1)Adaboost的加法模型:在Adaboost的基础上,将多个基分类器合并为一个复杂分类器,是通过计算每个基分类器的加权和。通常情况下这是一个复杂的优化问题,很难通过简单的凸优化的相关知识进行解决。而前向分步算法可以用来求解这种方式的问题,它的基本思路是:因为学习的是加法模型,如果从前向后,每一步只优化一个基函数及其系数,逐步
- 梯度提升树系列6——GBDT在异常检测领域的应用
theskylife
数据挖掘机器学习数据挖掘GBDT分类python
目录写在开头1异常检测的基本概念1.1定义和目标1.2GBDT在异常检测中的适用性2信用卡欺诈检测案例分析2.1场景介绍2.2收集数据和特征工程2.3进行异常值识别2.4模型效果评估2.5模型优化3策略和技巧4面临的挑战和解决方案4.1数据不平衡4.2过拟合4.3模型解释性写在最后在如今数据驱动的时代,异常检测成为了保障系统安全的关键技术,尤其在金融安全、网络安全等领域中扮演着至关重要的角色。梯度
- AdaBoost 算法
Rnan-prince
机器学习算法Adaboost机器学习
AdaBoost算法是一种经典的集成学习算法,它将多个弱分类器集成起来,以达到较高的分类准确率,广泛应用于数据分类、人脸检测等应用中。尤其在人脸检测方面,AdaBoost是非常经典、成功的一个算法。弱分类器被线性组合成为一个强分类器。一、面临两个问题:在每一轮,如何改变训练数据的概率分布或者权值分布。如何将弱分类器组合成强分类器。二、AdaBoost的思路:提高那些被前一轮弱分类器错误分类样本的权
- AdaBoost算法
小森( ﹡ˆoˆ﹡ )
机器学习算法算法机器学习人工智能
Boosting是一种集成学习方法,AdaBoost是Boosting算法中的一种具体实现。Boosting方法的核心思想在于将多个弱分类器组合成一个强分类器。这些弱分类器通常是简单的模型,比如决策树,它们在训练过程中的错误会被后续的弱分类器所修正。Boosting算法通过逐步增加新的弱分类器来提高整体模型的性能,每个新的弱分类器都专注于之前模型分类错误的样本。AdaBoost(AdaptiveB
- 梯度提升树系列3——利用GBDT进行回归分析
theskylife
数据挖掘回归数据挖掘人工智能
目录写在开头1.回归问题的基本概念1.1回归分析的定义和目的1.2GBDT在回归中的特点2房价预测模型案例研究2.1数据准备和预处理2.2模型构建和评估方法2.3具体代码3模型调优和评估3.1参数调优的详细策略3.2模型性能评估的详细方法3.3模型优化3.4可视化写在最后写在开头回归分析在数据挖掘领域扮演着至关重要的角色。它允许我们预测数值型目标变量,并揭示自变量与目标之间的关系。在本文中,我们将
- 梯度提升树系列4——GBDT在排序问题中的应用
theskylife
数据挖掘机器学习数据挖掘数据分析python排序
目录写在开头1学习排序的基础1.1排序问题的定义1.2GBDT在排序中的应用场景1.3结合GBDT的排序模型2.搜索引擎应用实例2.1案例背景2.2数据构建2.3具体实现代码3.模型评估和优化策略3.1常见的评估指标3.1.1评估指标举例3.1.2评估指标示例3.2优化方法和技巧写在最后排序问题在信息检索、推荐系统等领域发挥着举足轻重的作用。它们帮助系统高效地从大量信息中挑选出用户最可能感兴趣的内
- 梯度提升树系列5——使用GBDT进行特征选择
theskylife
数据挖掘深度学习人工智能机器学习数据挖掘
特征选择是机器学习和数据科学中至关重要的一环,它不仅可以提高模型的性能,还能显著减少模型训练所需的时间和资源。本文将深入探讨如何使用梯度提升决策树(GradientBoostingDecisionTree,GBDT)进行特征选择,并强调这一方法在实践中的重要性和效果。写在开头特征选择在提高模型性能中扮演了不可或缺的角色。正确的特征选择不仅能够提升模型的准确率,还能减少模型训练的复杂度,使模型更快地
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu