LRU LFU FIFO

一、LRU

LRU全称是Least Recently Used,即最近最久未使用的意思。如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小。也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰。而用什么数据结构来实现LRU算法呢?

可能大多数人都会想到:用一个数组来存储数据,给每一个数据项标记一个访问时间戳,每次插入新数据项的时候,先把数组中存在的数据项的时间戳自增,并将新数据项的时间戳置为0并插入到数组中。每次访问数组中的数据项的时候,将被访问的数据项的时间戳置为0。当数组空间已满时,将时间戳最大的数据项淘汰。这种实现思路很简单,但是有什么缺陷呢?需要不停地维护数据项的访问时间戳,另外,在插入数据、删除数据以及访问数据时,时间复杂度都是O(n)。

那么有没有更好的实现办法呢?

那就是利用链表移动访问时间的数据顺序hashmap查询是否是新数据项。当需要插入新的数据项的时候,如果新数据项在链表中存在(一般称为命中),则把该节点移到链表头部,如果不存在,则新建一个节点,放到链表头部,若缓存满了,则把链表最后一个节点删除即可。在访问数据的时候,如果数据项在链表中存在,则把该节点移到链表头部,否则返回-1。这样一来在链表尾部的节点就是最近最久未访问的数据项。
参考LRU cache

二、LFU

LFU(Least Frequently Used)最近最少使用算法。它是基于“如果一个数据在最近一段时间内使用次数很少,那么在将来一段时间内被使用的可能性也很小”的思路。
注意LFU和LRU算法的不同之处,LRU的淘汰规则是基于访问时间,而LFU是基于访问次数的。举个简单的例子:
假设缓存大小为3,数据访问序列为set(2,2),set(1,1),get(2),get(1),get(2),set(3,3),set(4,4),
则在set(4,4)时对于LFU算法应该淘汰(3,3),而LRU应该淘汰(1,1)。

为了能够淘汰最少使用的数据,因此LFU算法最简单的一种设计思路就是 利用一个数组存储 数据项,用hashmap存储每个数据项在数组中对应的位置,然后为每个数据项设计一个访问频次,当数据项被命中时,访问频次自增,在淘汰的时候淘汰访问频次最少的数据。这样一来的话,在插入数据和访问数据的时候都能达到O(1)的时间复杂度,在淘汰数据的时候,通过选择算法得到应该淘汰的数据项在数组中的索引,并将该索引位置的内容替换为新来的数据内容即可,这样的话,淘汰数据的操作时间复杂度为O(n)。
参考缓存算法

三、FIFO

FIFO(First in First out),先进先出。其实在操作系统的设计理念中很多地方都利用到了先进先出的思想,比如作业调度(先来先服务),为什么这个原则在很多地方都会用到呢?因为这个原则简单、且符合人们的惯性思维,具备公平性,并且实现起来简单,直接使用数据结构中的队列即可实现。在FIFO Cache设计中,核心原则就是:如果一个数据最先进入缓存中,则应该最早淘汰掉。

那么利用什么数据结构来实现呢?

下面提供一种实现思路:利用一个双向链表保存数据,当来了新的数据之后便添加到链表末尾,如果Cache存满数据,则把链表头部数据删除,然后把新的数据添加到链表末尾。在访问数据的时候,如果在Cache中存在该数据的话,则返回对应的value值;否则返回-1。如果想提高访问效率,可以利用hashmap来保存每个key在链表中对应的位置。
参考缓存算法

你可能感兴趣的:(LRU LFU FIFO)