树的深度优先搜索

有关树的搜索问题一般都可以通过递归写出来。
一.
题目:Path Sum

Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum. 
For example:
Given the below binary tree and sum = 22, 
              5
             / \
            4   8
           /   / \
          11  13  4
         /  \      \
        7    2      1
return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.

解题思想
题目意思是给了一个二叉树,每个节点对应一个值,同时给了一个指定的树。 然后请问是否有一条从根节点开始,到叶节点的路径,其和正好等于那个值。
做法就是简单的DFS,如果到了叶节点刚好等于那个值就返回True,如果不够或者超过则返回False(搜索的时候如果还没到叶节点就超了,就回溯回去)。
代码:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
 class Solution {
public:

    void dfs(TreeNode* root, int sum, bool& ret){
        if(sum == root -> val && !root -> left && !root -> right){
            ret = true;
            return;
        }
        if(!root-> left && !root -> right)
          return;
        if(root -> left)
          dfs(root -> left, sum - root -> val, ret);
        if(root -> right)
          dfs(root -> right, sum - root -> val, ret);
    }
    
    bool hasPathSum(TreeNode* root, int sum) {
        bool ret = false;
        if(root == NULL)
          return ret;
        dfs(root, sum, ret);
        return ret;
    }
或者代码:
public class Solution {
 bool hasPathSum(TreeNode *root, int sum) {
        if (root == NULL) return false;
        if (root->val == sum && root->left ==  NULL && root->right == NULL) return true;
        return hasPathSum(root->left, sum-root->val) || hasPathSum(root->right, sum-root->val);
    }
}

变形1.Leetcode 113. Path Sum II 路径和2

Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum. 
For example:
Given the below binary tree and sum = 22, 
              5
             / \
            4   8
           /   / \
          11  13  4
         /  \    / \
        7    2  5   1
return
[
   [5,4,11,2],
   [5,8,4,5]
]

解题思想和上题类似,只不过上题是判读是否存在这样的路径,而该题是找出这样的路径.

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */


 /**
  * 和原来的不一样,这题要完全遍历,使用track跟踪当前的进度,进入dfs时压进去,出dfs时推出,当时叶节点且和正好为0是,克隆添加到结果中。
  * */
public class Solution {
    List> list;
    LinkedList track;
    public void dfs(TreeNode root,int sum){
        if(root==null)
            return;
        sum-=root.val;
        track.add(root.val);
        if(sum==0 && root.left==null && root.right==null)
            list.add((LinkedList)track.clone());
        dfs(root.left,sum);
        dfs(root.right,sum);
        track.remove(track.size()-1);

    }
    public List> pathSum(TreeNode root, int sum) {
        this.list=new ArrayList>();
        this.track=new LinkedList();
        dfs(root,sum);
        return this.list;
    }
}

变形3.Path Sum III

You are given a binary tree in which each node contains an integer value.

Find the number of paths that sum to a given value.

The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).

The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.

例子.

root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8

      10
     /  \
    5   -3
   / \    \
  3   2   11
 / \   \
3  -2   1

Return 3. The paths that sum to 8 are:

1.  5 -> 3
2.  5 -> 2 -> 1
3. -3 -> 11

代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int pathSum(TreeNode* root, int sum) {
        if(root == NULL)
          return 0;
        return dfs(root, sum) + pathSum(root -> left, sum) + pathSum(root -> right, sum);
    }
    
    int dfs(TreeNode* root, int sum){
        int ret = 0;
        if(root == NULL)
          return ret;
        if(sum == root -> val)
          ret ++;
        ret += dfs(root -> left, sum - root -> val);
        ret += dfs(root -> right, sum - root -> val);
        return ret;
    }
};

下面两道也是很相似的两道,都需要找到从根到每个叶子节点的所有路径。
前者是打印出每一个从根到叶子节点的路径,后一个是求出所有路径中的最小深度,在求解第二个问题的时候,我先是按照第一道题的思路,求出根到叶子节点的所有路径,然后再从中找出最小深度的。
问题一.Binary Tree Paths
Given a binary tree, return all root-to-leaf paths.
For example, given the following binary tree:

 1
 /   \
2     3
 \
  5

All root-to-leaf paths are:

["1->2->5", "1->3"]

代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    void binaryTreePath(vector& result, TreeNode* root, string t) {
    if(!root->left && !root->right) {
        result.push_back(t);
        return;
    }

    if(root->left) binaryTreePath(result, root->left, t + "->" + to_string(root->left->val));
    if(root->right) binaryTreePath(result, root->right, t + "->" + to_string(root->right->val));
}

vector binaryTreePaths(TreeNode* root) {
    vector result;
    if(!root) return result;
    
    binaryTreePath(result, root, to_string(root->val));
    return result;
}    
};

问题二.Minimum Depth of Binary Tree
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
解题思路:先按照上面问题的思路得到所有根到叶子节点的深度,放在一个vector中,然后遍历整个vector,找到最小的路径深度,本来以为整个过程下来会超时,没想到AC了。
代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    void dfs(vector& allDepth, TreeNode* root, int depth){
        if(root -> left == NULL && root -> right == NULL){
            allDepth.push_back(depth);
            return;
        }
        if(root->left) dfs(allDepth, root->left, depth + 1);
        if(root->right) dfs(allDepth, root->right, depth + 1);
          
    }
    
    int minDepth(TreeNode* root) {
        if(root == NULL)
          return 0;
        vector allDepth;
        int depth = 1;
        dfs(allDepth, root, depth);
        int min = allDepth[0];
        for(int i = 1; i < allDepth.size(); i ++){
            if(allDepth[i] < min)
              min = allDepth[i];
        }
        return min;
    }
};

你可能感兴趣的:(树的深度优先搜索)