- Embedding与向量数据库
玖月初玖
大模型应用开发基础人工智能embedding数据库
1.Embedding是什么EmbeddingModel是一种机器学习模型,它的核心任务是将离散的、高维的符号(如单词、句子、图片、用户、商品等)转换成连续的、低维的向量(称为“嵌入”或“向量表示”),并且这个向量能有效地捕捉原始符号的语义、关系或特征。1.1通俗理解EmbeddingModel是让计算机“理解”世界的核心工具,把“文字、图片、音频”等信息变成一串有意义的数字我们称之为“向量”。类
- python分布式事务_分布式事务系列(2.1)分布式事务的概念
#1系列目录#2X/OpenDTPDTP全称是DistributedTransactionProcess,即分布式事务模型。之前我们接触的事务都是针对单个数据库的操作,如果涉及多个数据库的操作,还想保证原子性,这就需要使用分布式事务了。而X/OpenDTP就是一种分布式事务处理模型。##2.1X/OpenDTP模型X/Open是一个组织,维基百科上这样说明:X/Open是1984年由多个公司联合创
- 【提示词优化技巧】利用大模型进行提示词自优化
weixin_37763484
大模型人工智能
看到一篇帖子,里面记录了如下的提示词优化技术,我使用ai进行了解读。整体来看,这个方法非常合理,能减少人工干预,值得试一试。原始方法如下:1.主题:构建高效Prompt的系统化流程:一种元提示工程方法在与大型语言模型(LLM)的交互中,提示词(Prompt)的质量直接决定了输出的上限。传统的Prompt撰写高度依赖工程师的经验和直觉,缺乏一套系统化的构建与优化流程,导致效率瓶颈和质量波动。本文提出
- 从0构建 HarmonyOS 本地语音识别项目:Whisper 完整落地教程
观熵
国产大模型部署实战全流程指南harmonyos语音识别whisper深度学习机器学习
第一章:鸿蒙手机语音识别项目实战(基于Whisper本地推理)项目目标:构建一个可以在鸿蒙系统手机本地运行的语音识别应用,使用Whisper模型识别用户语音为文字,全程无需联网。1.为什么要在鸿蒙手机本地部署语音识别?在很多移动场景下(驾驶、弱网环境、隐私敏感场景等),云端语音识别存在如下痛点:⏳网络延迟高、体验割裂⚠️数据隐私风险大网络依赖强,弱网/无网直接无法使用而将语音识别模型部署在鸿蒙设备
- 网络参考模型以及各层对应的协议
窗外千纸鹤
网络网络网络协议
网络参考模型在互联网中实际使用的是TCP/IP参考模型。实际存在的协议主要包括在:物理层、数据链路层、网络层、传输层和应用层。各协议也分别对应这5个层次而已。【1】物理层:主要定义物理设备标准,如网线的接口类型、光纤的接口类型、各种传输介质的传输速率等。它的主要作用是传输比特流(就是由1、0转化为电流强弱来进行传输,到达目的地后在转化为1、0,也就是我们常说的数模转换与模数转换),这一层的数据叫做
- 如何构建高效的向量数据库以优化大模型检索能力
学习ing1
数据库
1.构建向量数据库的基础架构1.1确定数据存储需求构建高效的向量数据库以优化大模型检索能力,首先要明确数据存储需求。大模型通常涉及海量的参数和数据,例如一个拥有10亿参数的模型,其存储需求可能达到数百GB。根据数据的规模和类型,需要确定存储的容量、速度和可靠性。对于大规模数据,分布式存储是常见的选择,它可以将数据分散存储在多个节点上,提高存储效率和数据访问速度。同时,数据的读写频率也是重要因素,高
- LLM初识
从零到一:用Python和LLM构建你的专属本地知识库问答机器人摘要:随着大型语言模型(LLM)的兴起,构建智能问答系统变得前所未有的简单。本文将详细介绍如何使用Python,结合开源的LLM和向量数据库技术,一步步搭建一个基于你本地文档的知识库问答机器人。你将学习到从环境准备、文档加载、文本切分、向量化、索引构建到最终实现问答交互的完整流程。本文包含详细的流程图描述、代码片段思路和关键注意事项,
- 大模型——TRAE+Milvus MCP 自然语言就能搞定向量数据库
不二人生
大模型milvus数据库trae大模型
大模型——TRAE+MilvusMCP自然语言就能搞定向量数据库不久前,继Cursor和ClaudeDesktop在海外市场掀起智能编程浪潮后,字节跳动TRAE海外版也进入了付费模式。相较前两款海外产品,TRAE集成了代码补全、智能问答和Agent模式之外,还可以为中文开发者带来本土化的智能编程体验。恰逢其时,MilvusMCP服务器新增了SSE(Server-SentEvents)支持。相比传统
- 大语言模型:人像摄影的“达芬奇转世”?——从算法解析到光影重塑的智能摄影革命
黑巧克力可减脂
AIGC语言模型人工智能自然语言处理
导言在摄影术诞生之初,达芬奇或许无法想象,他对于光影、比例和解剖的严谨研究,会在数百年后以另一种形式重生。今天,当摄影师面对复杂的光线环境或苦苦寻找最佳构图时,一位由代码构筑的“光影军师”正悄然降临——大语言模型(LLM)正以前所未有的方式,重塑人像摄影的创作边界。解构经典:大语言模型如何“消化”百年摄影智慧大语言模型并非凭空创造建议,其根基在于对海量摄影知识体系的深度理解与结构化重组。理论内化:
- 【速通RAG实战:数据库】6.RAG向量数据库原理
无心水
速通RAG实战!解锁AI2.0高薪密码速通RAG实战RAG快速开发实战RAGRAG向量数据库相似度FAISSChroma
在RAG(检索增强生成)系统中,向量数据库扮演着至关重要的角色,它负责存储文本经过Embedding处理后的向量表示,并能高效地进行向量检索,以找出与查询向量最相似的文档。1.向量数据库原理1.向量表示在RAG系统里,文本首先会通过Embedding模型(如OpenAIEmbeddings、SentenceTransformers等)转化为固定维度的向量。这些向量能够捕捉文本的语义信息,使得语义相
- LangChain4j入门:Java开发者的AI应用开发指南
半夜偷你家裤衩子
LangChain4jjava人工智能开发语言LangChain4j
在AI浪潮席卷全球的今天,Java开发者如何快速上手大语言模型应用开发?LangChain4j为我们提供了完美的解决方案!前言:为什么Java开发者需要LangChain4j?想象一下,你正在开发一个企业级应用,需要集成ChatGPT来提供智能客服功能。传统方式需要直接调用OpenAIAPI,处理复杂的HTTP请求、错误重试、上下文管理等问题。而使用LangChain4j,几行代码就能搞定:Cha
- 深入解析部分可观测马尔可夫决策过程(POMDP)及其应用
码字的字节
算法人工智能马尔可夫决策过程POMDP
POMDP的基本概念与模型部分可观测马尔可夫决策过程(PartiallyObservableMarkovDecisionProcess,POMDP)是强化学习领域中处理不完全信息环境的核心数学模型。与完全可观测的马尔科夫决策过程(MDP)相比,POMDP更贴近现实世界中智能体面临的感知局限,其核心特征在于系统状态无法被直接观测,智能体必须通过间接的观测信号来推断潜在状态。POMDP的七元组模型PO
- 全球软件技术峰会 2025:聚焦大模型开发、智能运维与架构创新,共赴技术实战盛宴
向日葵也有悲伤
运维架构推荐算法数据结构大数据数据库架构
全球软件技术峰会2025:聚焦大模型开发、智能运维与架构创新,共赴技术实战盛宴在软件定义未来的时代,人工智能与数字化技术正以颠覆性力量重塑全球产业格局。2025年8月15-16日,以"全球专家、卓越智慧"为宗旨的全球软件技术峰会将盛大启幕,特邀全球近50位来自微软、谷歌、亚马逊、字节跳动等企业的技术领袖及一线实战专家,围绕大模型智能应用开发、AI与ML智能运维、软件开发智能化、架构设计与演进四大核
- 销售易发布中国首款AI CRM,纷享销客什么时候能抄上作业
wq54wq
人工智能
在数字化转型的深水区,客户关系管理、系统已成为企业增长的核心基础设施,一家可以与企业共同成长的CRM厂商才能跟上企业业务的快速发展,帮助企业实现高质量增长。2025年3月19日,销售易在腾讯云城市峰会上高调发布中国首款AICRM产品——NeoAgent。这款融合了腾讯混元大模型与DeepSeek开源技术的智能体矩阵,不仅重新定义了CRM的交互逻辑,更将行业竞争推向了“使技术真正回归赋能业务的本质”
- 零信任安全:重塑网络安全架构的革命性理念
scuter_yu
安全web安全架构
一、核心理念零信任安全的核心理念是“永不信任,持续验证”(NeverTrust,AlwaysVerify)。这一理念认为,任何用户、设备或应用程序无论处于网络内部还是外部,都不应被默认信任。与传统的基于边界的安全模型不同,零信任模型假设网络内部和外部都存在潜在威胁,因此对每一次访问请求都进行严格的身份验证和授权。二、核心原则零信任安全遵循以下核心原则:持续验证:对用户和设备进行持续的身份验证,确保
- 【Tomcat】Tomcat线程池深度调优手册(终极版)
夜雨hiyeyu.com
javatomcatjavajvmspringspringbootnginxapache
Tomcat线程池深度调优手册(终极版)一、Tomcat线程池架构全解析二、精准参数计算公式(带场景适配)三、线程池溢出故障树分析四、生产环境全链路调优五、极限性能压测方案六、特殊场景应对策略七、调优禁忌清单八、调优效果验证一、Tomcat线程池架构全解析三层处理模型accept队列任务分发响应TCP层NIO线程业务线程池网络层TCP层:内核维护的SYN队列(受net.core.somaxconn
- 大模型 Function Calling 中的两种参数传入方式对比——为什么建议tools方式传参而不建议system message传参
John_今天务必休息一天
大模型智能体大模型functioncall人工智能
大模型FunctionCalling中的两种参数传入方式对比——为什么建议tools方式传参而不建议systemmessage传参一、设计定位与功能匹配度不同二、结构化vs非结构化:影响工具调用的准确性三、分离关注点:降低维护成本与逻辑混淆四、模型优化适配:专用参数的可靠性更高总结在大模型(如千问)的工具调用场景中,建议通过tools参数传入调用函数信息,而非通过SystemMessage传入,核
- AI产品经理面试宝典第45天:AI应用设计与伦理隐私问题应对指南
TGITCIC
AI产品经理一线大厂面试题产品经理AI面试大模型面试AI产品经理面试大模型产品经理面试AI产品大模型产品
如何提升AI产品的用户体验?问:如何提升AI产品的用户体验?答:用户体验优化需从三个维度突破:数据质量、交互逻辑、反馈机制。首先确保训练数据覆盖真实场景长尾需求,例如智能客服需采集方言、行业术语等特殊语料。其次设计渐进式交互路径,如医疗影像诊断产品采用"一键初筛-人工复核-历史对比"三段式流程。最后建立动态反馈闭环,通过埋点采集用户行为数据,结合A/B测试持续迭代模型输出结果。专业指导此题考察产品
- 背靠腾讯的销售易,发布中国首款AI CRM,纷享销客接下来怎么办
CC_54321
人工智能
在数字化转型的深水区,客户关系管理、系统已成为企业增长的核心基础设施,一家可以与企业共同成长的CRM厂商才能跟上企业业务的快速发展,帮助企业实现高质量增长。2025年3月19日,销售易在腾讯云城市峰会上高调发布中国首款AICRM产品——NeoAgent。这款融合了腾讯混元大模型与DeepSeek开源技术的智能体矩阵,不仅重新定义了CRM的交互逻辑,更将行业竞争推向了“使技术真正回归赋能业务的本质”
- 财富进化之路,永无止境 2020.03.20 超有才华第322次百字悟
超有才华
猫叔五堂课的最后一次分享,是讲自己的成长历程的谈心。1、多输出《大话西游》唐僧台词很有趣:你想要啊?悟空,你要是想要的话你就说话嘛,虽然你很有诚意地看着我,你不说我怎么知道你想要呢。输出有价值的内容,让别人快速理解并践行才有用。2、多输入米瑟大大讲过:我们无法给别人,我们自己没有的东西。定位冠军战略教练,需要具备多元思维模型和素材,胸无点墨,画不出波澜壮阔。3、卖经验什么成就了你,你用来成就别人,
- 微软CEO Satya Nadella提出AI重构法则:从范式跃迁到社会盈余
TGITCIC
AI-大模型的落地之道AI大模型大模型AIAIAgentAI智能体AI落地大模型落地
1.范式跃迁:AI作为第四次技术革命的核心驱动力1.1技术代际的复合效应从客户端到互联网、移动互联网再到云计算,技术平台的演进始终遵循“平台变革→产品跃迁→反哺平台”的螺旋上升逻辑。AI的特殊性在于其叠加了前三代技术的基础设施能力:云计算:提供百亿级参数模型的分布式训练能力互联网:构建全球数据流动与反馈闭环移动终端:扩展AI服务的触达边界技术范式核心特征代表产品对AI的支撑作用客户端本地化计算Wi
- LangChain 源码剖析(二):LangChain 流程编排的核心骨架——Chain 基类源码剖析
ATM006
人工智能langchain大模型Agent
每一篇文章都短小精悍,不啰嗦。在LangChain框架中,Chain是连接各种组件(模型、工具、数据库等)的核心骨架,负责将多个步骤按逻辑串联成可执行的工作流。无论是简单的「提问-回答」流程,还是复杂的「检索-思考-工具调用」pipeline,都依赖Chain基类提供的基础能力。本文将从架构设计、核心功能到实现细节,全面解析这一基类的设计智慧。一、架构定位:为什么需要Chain基类?Chain基类
- 大数据领域 Kafka 入门指南:从安装到基础使用
大数据洞察
大数据与AI人工智能大数据kafkalinqai
大数据领域Kafka入门指南:从安装到基础使用关键词:Kafka、消息队列、分布式系统、大数据处理、实时数据流、生产者消费者模型、ZooKeeper摘要:本文是一篇全面介绍ApacheKafka的入门指南,从基本概念到实际应用。我们将详细讲解Kafka的核心架构、工作原理,并提供从安装配置到基础使用的完整实践指导。文章包含Kafka的生产者-消费者模型实现、集群部署策略、性能优化技巧,以及在大数据
- 在NLP深层语义分析中,深度学习和机器学习的区别与联系
在自然语言处理(NLP)的深层语义分析任务中,深度学习与机器学习的区别和联系主要体现在以下方面:一、核心区别特征提取方式机器学习:依赖人工设计特征(如词频、句法规则、TF-IDF等),需要领域专家对文本进行结构化处理。例如,传统情感分析需人工定义“情感词库”或通过词性标注提取关键成分。深度学习:通过神经网络自动学习多层次特征。例如,BERT等模型可从原始文本中捕获词向量、句法关系甚至篇章级语义,无
- Microsoft Powerpoint for Mac 2021 中文破解版 (幻灯片演示文稿制作)
1f40c7e94f60
软件介绍/功能MicrosoftPowerPoint2021forMac破解版是办公必备的软件之一,作为知名的幻灯片演示文稿制作软件,这次的PowerPoint2021破解版改进和新增不少功能,比如@提及功能、墨迹绘制、3D模型插入等,功能更加完善,制作PPT怎么能少的了这款PowerPoint2021破解版,欢迎各位下载PowerPoint2021mac版体验全新功能!软件地址:macdwn.s
- 2019-07-27文献阅读记录
一行白鹭上青天
题目:城市群视角下空间联系与城市扩张的关联分析期刊:地理科学进展ProgressinGeography作者:焦利民,唐欣,刘小平摘要:在城市群发展的不同阶段,城市扩张表现出不同的时空特征。从城市群视角研究城市扩张的时空规律,对于理解城市扩张与城市群网络化组织结构之间的复杂耦合关系具有重要意义。本文以长江三角洲城市群为例,基于交通网络、引力模型和空间句法模型,结合1980、1990、2000和201
- 谈谈JVM内存泄漏与内存溢出的区别
cyc&阿灿
Javajvm
一、前言在Java开发中,内存管理是一个永恒的话题。JVM虽然提供了自动内存管理机制,但内存相关的问题依然困扰着许多开发者。其中,内存泄漏(MemoryLeak)和内存溢出(OutOfMemory,OOM)是两个最容易混淆的概念。本文将深入剖析两者的本质区别,并通过图示和代码示例帮助大家彻底理解。二、核心概念解析1.JVM内存模型回顾在讨论内存泄漏和溢出前,我们先回顾下JVM的内存结构:┌────
- 深度学习--利用梯度下降法进行多变量的二分类(感知机)
白话学生nit
深度学习分类人工智能
其实这一节涉及到了感知机的相关知识,就把这一节当作是学习感知机的引子吧。什么是二分类我们先来说一下什么是二分类,二分类指的是将结果分为两个互斥的类别,通常用来表示问题的两种可能。为什么用感知机学习二分类常见的解决问题的模型有很多,这里我们使用感知机模型。至于为什么,因为感知机模型很多地方用起来比较简便,就拿我们这一节的问题举一下例子,我们需要依照房子的价格对房子进行分类。在感知机模型中,我们可以使
- *SFT深度实践指南:从数据构建到模型部署的全流程解析
大千AI助手
人工智能Python#OTHER人工智能深度学习算法大模型SFT微调Lora
一、SFT技术原理与定位核心定义SFT是在预训练语言模型(如LLaMA、GPT)基础上,利用标注数据优化模型以适应特定任务的技术。其本质是通过调整模型参数,将通用语言能力迁移至专业领域(如法律、医疗)或任务(如对话生成、代码补全)。与预训练的区别预训练:使用无标注数据(如维基百科)学习通用表征,消耗千亿级token算力。SFT:使用标注数据(如指令-答案对)进行任务适配,成本仅为预训练的1/100
- LiteCoT:难度感知的推理链压缩与高效蒸馏框架
大千AI助手
人工智能#Prompt#OTHER深度学习人工智能机器学习自然语言处理提示词LiteCoT思维链
“以智能裁剪对抗冗余,让推理效率与精度兼得”LiteCoT是由香港科技大学(广州)联合独立研究者团队提出的创新方法,旨在解决大模型知识蒸馏中推理链过度冗长和缺乏难度适应性的核心问题。该方法通过难度感知提示(DAP)动态生成精简的推理链,显著提升小模型推理效率与准确性。相关论文发表于arXiv预印本平台(2025年),为当前大模型轻量化部署的前沿方案。本文由「大千AI助手」原创发布,专注用真话讲AI
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement