- 第38周:猫狗识别 (Tensorflow实战第八周)
weixin_46620278
tensorflow人工智能python
目录前言一、前期工作1.1设置GPU1.2导入数据输出二、数据预处理2.1加载数据2.2再次检查数据2.3配置数据集2.4可视化数据三、构建VGG-16网络3.1VGG-16网络介绍3.2搭建VGG-16模型四、编译五、训练模型六、模型评估七、预测总结前言本文为中的学习记录博客原作者:说在前面1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视
- KNOWLEDGE UNLEARNING FOR MITIGATING PRIVACY RISKS IN LANGUAGE MODELS
绒绒毛毛雨
语言模型人工智能自然语言处理
文章目录摘要1引言2相关工作2.1语言模型的隐私方法2.2机器去学习2.3语言模型中的记忆3语言模型中的知识去学习3.1方法论3.2量化语言模型的隐私风险4实验4.1模型、数据集和配置4.2主要实验4.3知识去学习的分析5结论摘要预训练语言模型(LMs)在初始预训练过程中记忆了大量知识,包括可能侵犯个人隐私和身份的信息。以往针对语言模型隐私问题的研究主要集中在数据预处理和差分隐私方法上,这两者都需
- 数据挖掘中的关联规则--面向频繁项集的A-Priori算法
绒绒毛毛雨
大数据挖掘算法数据挖掘python
文章目录一、频繁项集与关联规则学习1.实体与关系2.支持度与频繁项集3.关联规则二、寻找频繁项集1.频繁项集发现的挑战三角矩阵项对计数值的三元组存储方法2.频繁项集的单调性3.面向项对的A-Priori算法4.PCY算法哈希表创建第二遍扫描5、多阶段算法6、多哈希算法7、随机化算法8、SON算法9、Toivonen算法三、频繁项集小实践:消费者购买记录模拟数据示例具体问题分析一、频繁项集与关联规则
- LGBMRegressor CatBoostRegressor XGBRegressor回归
兔兔爱学习兔兔爱学习
竞赛代码实践回归数据挖掘
importpandasaspd#导入csv文件的库importnumpyasnp#进行矩阵运算的库importpolarsaspl#和pandas类似,但是处理大型数据集有更好的性能.#用于对一组元素计数,一个存在默认值的字典,访问不存在的值时抛出的是默认值fromcollectionsimportCounter,defaultdictimportre#用于正则表达式提取fromscipy.st
- 【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用
半截诗
Pythonpython机器学习scikit-learn人工智能深度学习数据分析随机森林
文章目录从零到精通:全面揭秘Scikit-Learn在机器学习中的绝妙应用前言第一部分:深入了解Scikit-Learn的基础知识1.什么是Scikit-Learn?2.安装Scikit-Learn3.Scikit-Learn中的基本构件4.数据集的加载与探索5.数据预处理标准化数据6.构建和训练机器学习模型构建逻辑回归模型7.模型评估与验证混淆矩阵第二部分:深入理解Scikit-Learn的高级
- 【docker了解】如何将x86镜像转换为适用于Jetson的ARM镜像
Eternal-Student
Dockerdockerarm开发容器
将x86架构的Docker镜像转换为适用于ARM架构的Jetson设备的镜像是一个复杂的过程,因为这两种架构的指令集完全不同。不过,有一些方法可以尝试实现这一转换。使用QEMU进行仿真在x86机器上,你可以使用QEMU来模拟ARM环境,从而运行ARM镜像。但是,这种方法主要用于测试和开发,而不是生产环境。以下是基本步骤:安装QEMU:在x86机器上安装QEMU,它是一个开源的机器模拟器和虚拟化器。
- GOCI-L2可以指定变量和日期批量下载
一休哥※
数据集下载windows数据库数据集GOCI
下载数据集运行批量下载脚本按需修改代码注意修改时间修改需要的变量zip下载结果实现批量下载GOCI-II数据集标记 GOCI-II数据集下载脚本运行批量下载脚本数据集网站:https://kosc.kiost.ac.kr/gociSearch/list.nm?menuCd=11&lang=ko&url=gociSearch&dirString=/COMS/GOCI/L2/有批量下载数据集的需求,
- 使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统 yolov8来训练无人机数据集并检测无人机
QQ_767172261
无人及视角YOLO无人机深度学习
使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统yolov8来训练无人机数据集并检测无人机无人机数据集,yolo格式种类为uav,一共近5w张图片,如何用yolov8代码训练无人机检测数据集文章目录以下文章及内容仅供参考。1.环境部署2.数据预处理数据集准备划分数据集3.模型定义4.训练模型5.评估模型6.结果分析与可视化7.集成与部署PyQt6GUI(`
- ubuntu电脑调用摄像头拍摄照片
山山而川_R
Drugsopencv计算机视觉人工智能
一、1、先装环境condacreate-ntextpython==3.8-ycondaactivatetext2、pipinstallopencv-python-ihttps://pypi.tuna.tsinghua.edu.cn/simple1、连接摄像头拍摄收集数据集capture_image5.pyimportcv2ascvimportosimportdatetimeimportnumpya
- 软件工程之信息系统集成
我叫吴桂鑫
计算机基础知识软件工程信息系统集成
现在的软件开发工作大多数是集成,所有部分都从头开发效率会很低,问题也会更多,成本也会更高。系统集成就是将各类资源有机、高效地整合到一起,形成一个完整的系统。信息系统集成包括网络集成、数据集成和应用集成等。网络集成、数据集成和应用集成分别用于解决系统的互连性、互通性和互操作性。(1)网络集成(企业局域网)重点是系统中异构网络的互连。(2)数据集成(大数据)重点是系统中异构数据集的互通使用和统一管理。
- 全面解析物联网信息安全知识体系
无声远望
本文还有配套的精品资源,点击获取简介:本资料集详细介绍物联网信息安全的多个重要方面,包括基础概念、数学基础、数据安全与隐私保护、集成安全技术、安全分析、防护策略和身份认证。从基本的物联网安全概念到深度探讨密码学基础,再到数据保护技术,再到全面的系统安全设计,安全分析,防御措施以及身份验证技术,这些内容将为研究者、开发者和管理者提供物联网安全的全面视角。1.物联网信息安全基础概念在现代技术不断发展的
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 大模型GUI系列论文阅读 DAY4:《PREDICT: Multi-Agent-based Debate Simulation for Generalized Hate Speech Detecti》
feifeikon
论文阅读
摘要虽然已经提出了一些公共基准用于训练仇恨言论检测模型,但这些基准之间的标注标准差异为模型的泛化学习带来了挑战,限制了其适用性。先前的研究提出了通过数据整合或扩充来泛化模型的方法,但在克服数据集之间的标注标准差异方面仍然存在局限性。为了解决这些挑战,我们提出了PREDICT,一种基于多代理(multi-agent)概念的仇恨言论检测新框架。PREDICT包括两个阶段:(1)PRE(基于视角的推理)
- 2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
汤姆和佩琦
sklearn机器学习sklearn学习python人工智能scikit-learn
文章目录sklearn学习(43)使用scikit-learn介绍机器学习43.1机器学习:问题设置43.2加载示例数据集43.3学习和预测43.4模型持久化43.4规定43.4.1类型转换43.4.2再次训练和更新参数43.4.3多分类与多标签拟合sklearn学习(43)使用scikit-learn介绍机器学习文章参考网站:https://sklearn.apachecn.org/和https
- springboot+vue项目实战2024第三集修改用户信息
javaspringboot
1.获取用户信息@GetMapping("/userInfo")//@RequestHeader(name="Authorization")StringtokenpublicResultuserInfo(){//Mapmap=JwtUtil.parseToken(token);Mapmap=ThreadLocalUtil.get();Stringusername=(String)map.get("
- [E题成品文章发布]2025美赛数学建模E题35页成品论文+每小问配套py+matlab代码+完整数据集+高清可视化结果图
2025数学建模资料汇总
2025美赛数学建模E题数学建模matlab开发语言
基于生态模型的有机农业管理策略研究:除草剂移除与物种引入的生态影响分析摘要随着全球农业可持续性需求的增加,减少化学品使用并提高农业生态系统的稳定性成为关键目标。本研究基于农业生态系统中的物种互动模型,探讨了不同农业管理方式对生态系统稳定性、害虫控制和成本效益的影响。完整版获取如下地址:点击加入【2025美国大学生数学建模竞赛】:http://qm.qq.com/cgi-bin/qm/qr?_wv=
- YOLOV11改进1-检测头篇
~啥也不会~
YOLO人工智能目标检测神经网络深度学习
文章目录前言一、YAML修改二、模型训练1.数据集准备2.环境准备3.训练3.1原结构训练3.2更改后的模型三.效果对比1.原始结构2.修改后的结果3.详细对比总结前言 目标检测领域里,小目标一直是一个难点问题,虽然我们可以用YOLO+SAHI的方式进行滑动窗口推理以提升准确率,但是他的耗时会线性增强,毕竟一张大图会被切成很多小图去推理,所以在很多场景下无法得到应用。这里,我们从探测头入手,
- 煤矿场景下拖链检测数据集VOC+YOLO格式21407张1类别
FL1623863129
数据集YOLO深度学习机器学习
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):21407标注数量(xml文件个数):21407标注数量(txt文件个数):21407标注类别数:1标注类别名称:["tuolian"]每个类别标注的框数:tuolian框数=21572总框数:21572使用标注工具:l
- 煤矿场景下安全帽检测数据集VOC+YOLO格式179张2类别
FL1623863129
数据集YOLOxml深度学习
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):170标注数量(xml文件个数):170标注数量(txt文件个数):170标注类别数:2标注类别名称:["hat","head"]每个类别标注的框数:hat框数=243head框数=28总框数:271使用标注工具:lab
- pytorch-分类-检测-分割的dataset和dataloader创建
呆呆珝
基础pytorch分类人工智能
1.前言在PyTorch中,Dataset和DataLoader是两个重要的工具,用于构建输入数据的管道。(1)Dataset是一个抽象类,表示数据集,需要实现__len__和__getitem__方法。(2)DataLoader是一个可迭代的数据加载器,它封装了数据集的加载、批处理、打乱和并行加载等功能。2.分类任务创建Dataset和DataLoader(1)对于分类任务,Dataset需要返
- 基于深度学习的鸟类识别系统详解(UI界面 + YOLOv10 + 数据集)
2025年数学建模美赛
深度学习uiYOLO人工智能python计算机视觉
引言鸟类识别是计算机视觉领域中一个独具挑战性的任务,尤其是在复杂的自然环境中,识别不同种类的鸟类需要非常强大的模型和丰富的数据集。随着深度学习技术的发展,基于YOLO(YouOnlyLookOnce)系列模型的目标检测系统展现了卓越的性能,特别是在速度和精度上的平衡方面。本博客将详细讲解如何利用YOLOv10模型来构建一个基于深度学习的鸟类识别系统。该系统会结合自定义鸟类数据集,设计一个简洁直观的
- Bootstrap Blazor 组件库 Table 组件 OnQueryAsync 查询 EF Core 键集分页、偏移分页 使用备忘
cqths
EFCore#BlazorWebAppbootstrap.netwebapp
privatelonglastId=0,firstId=0;privatelonglastPageIndex=0;privateintlastPageItems=0;privateasyncTask>OnQueryAsync(QueryPageOptionsoptions){IEnumerableitems;//不是翻页:刷新、改变每页条数、过虑,此时,清除跟踪(清除缓存)if(!options.
- springboot+vue项目实战2024第四集修改文章信息
java后端
1.添加文章信息@PostMappingpublicResultadd(@RequestBody@ValidatedArticlearticle){articleService.add(article);returnResult.success();}voidadd(Articlearticle);@Overridepublicvoidadd(Articlearticle){article.set
- Python代码用于在Abaqus中提取指定节点集的反作用力数据
Renz_314
python材料工程
这段代码用于在Abaqus中提取指定节点集的反作用力数据,并显示仿真结果。它通过打开仿真结果数据库(ODB文件),在特定视口中显示仿真结果,并从指定的节点集中提取反作用力数据,供后续分析使用。fromabaqusimport*fromabaqusConstantsimport*importvisualizationimportxyPlot#打开指定路径下的ODB文件odb=visualizatio
- 常用Python自动化测试框架有哪些?
字节程序员
软件测试python开发语言压力测试单元测试集成测试
随着技术的进步和自动化技术的出现,市面上出现了一些自动化测试框架。只需要进行一些适用性和效率参数的调整,这些自动化测试框架就能够开箱即用,大大节省了测试时间。而且由于这些框架被广泛使用,他们具有很好的健壮性,并且具有广泛多样的用例集和技术来轻易发现微小的缺陷。以前,测试团队接手一个项目,他们不得不为这个项目构建一个自动化测试框架。一个测试框架应该具有最佳的测试用例、假设(assumptions)、
- 分布式微服务系统架构第87集:kafka
掘金-我是哪吒
分布式微服务系统架构kafka架构
Kafka就是为了解决上述问题而设计的一款基于发布与订阅的消息系统。它一般被称为“分布式提交日志”或者“分布式流平台”。文件系统或数据库提交日志用来提供所有事务的持久记录,通过重放这些日志可以重建系统的状态。同样地,Kafka的数据是按照一定顺序持久化保存的,可以按需读取。此外,Kafka的数据分布在整个系统里,具备数据故障保护和性能伸缩能力。消息和批次消息和批次Kafka的数据单元被称为消息。如
- 团体程序设计天梯赛-练习集——L1-019 谁先倒
SY师弟
GPLT天梯赛算法c语言数据结构c++GPLTc#
前言这道题15分,稍有难度,难度不大,题目很有意思,可以学会了出去装B,下面直接看题L1-019谁先倒划拳是古老中国酒文化的一个有趣的组成部分。酒桌上两人划拳的方法为:每人口中喊出一个数字,同时用手比划出一个数字。如果谁比划出的数字正好等于两人喊出的数字之和,谁就输了,输家罚一杯酒。两人同赢或两人同输则继续下一轮,直到唯一的赢家出现。下面给出甲、乙两人的酒量(最多能喝多少杯不倒)和划拳记录,请你判
- 浏览器页面操作——实时监控网页变化,读取网页内容
集简云-软件连接神器
人工智能大数据chatgpt
浏览器页面操作功能介绍浏览器页面操作是集简云的一款免费内置应用,它可以定时监控网页变化,精准捕捉所需信息。一键设置指定网页与元素,全自动监测并即时推送通知,助您在第一时间了解网页最新情况,让您更高效便捷地获取与同步信息。您还可以使用浏览器页面操作读取网页内容,结合集简云集成的ChatGPT应用,让ChatGPT可以结合网页实时内容进行智能问答对话或文本生成。集简云平台,赞1▲新功能讲解视频浏览器页
- python鸢尾花数据集knn_【python+机器学习1】python 实现 KNN
weixin_39629269
python鸢尾花数据集knn
欢迎关注哈希大数据微信公众号【哈希大数据】1KNN算法基本介绍K-NearestNeighbor(k最邻近分类算法),简称KNN,是最简单的一种有监督的机器学习算法。也是一种懒惰学习算法,即开始训练仅仅是保存所有样本集的信息,直到测试样本到达才开始进行分类决策。KNN算法的核心思想:要想确定测试样本属于哪一类,就先寻找所有训练样本中与该测试样本“距离”最近的前K个样本,然后判断这K个样本中大部分所
- 【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
加德霍克
机器学习人工智能python学习作业
一、KNN算法概念K最近邻(K-NearestNeighbor,KNN)分类算法是数据挖掘分类技术中最简单的方法之一,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。二、对鸢尾花数据集进行预测1、代码示例:fromsklearn.datasetsimportl
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S