线性代数之——基变换矩阵

1. 恒等变换

现在让我们来找到这个特殊无聊的变换 对应的矩阵。这个恒等变换什么都没有做,对应的矩阵是恒等矩阵,如果输出的基和输入的基一样的话。

如果 ,那么变换矩阵就是 。

但是,如果基底不一样的话,那么 将会是 的组合 ,组合系数也就是矩阵 的第一列。

变换前后基改变了但向量本身并没有变,当输入和输出的基不一样的时候,变换矩阵就不是恒等矩阵了。

线性代数之——基变换矩阵_第1张图片
线性代数之——基变换矩阵_第2张图片

2. 小波变换=改变到小波基底

小波具有不同的长度并且位于不同的地方,第一个基向量其实不是小波,它是一个非常有用的常向量。下面是一个小波的例子:

线性代数之——基变换矩阵_第3张图片

这些向量是正交的,非常好。可以看到, 定位于前一半,而 定位于后一半。小波变换旨在找到一组系数 来用小波基向量表示输入信号 。

系数 代表均值,而系数 和 分别告诉我们前一半和后一半的详细信息。为什么我们要改变基向量呢?可以认为 是信号的强度,当然 4 是非常小的一个数字,实际上可能有 。我们想要压缩这个信号,只保留最大 5% 的系数,这样就能做到 20:1 的压缩比。

如果我们保留标准基下系数的 5%,我们就会丢失掉信号的 95%。但是,如果我们选择一组更好的基底,5% 的基向量就能恢复到和原始信号非常接近。在图像处理和音频编码领域,你根本看不出听不出区别来,我们根本不需要其它的 95%。

线性代数之——基变换矩阵_第4张图片

在线性代数里,一切都是完美的,我们省略压缩的步骤。输出 和输入 一模一样,变换得到 ,重建过程则将我们带回到原点 。在真正的信号处理领域,没有什么是完美的但一切都很快,无损失的变换和只丢失不必要信息的压缩过程是成功的关键,我们有 。

线性代数之——基变换矩阵_第5张图片
线性代数之——基变换矩阵_第6张图片

3. 傅里叶变换=改变到傅里叶基底

一个电气工程师对一个信号做的第一件事就是求它的傅里叶变换。针对有限的向量,我们要讨论的是离散傅里叶变换。离散傅里叶变换涉及到复数,但如果我们选择 ,矩阵非常小并且仅有的复数是 和 。

线性代数之——基变换矩阵_第7张图片

第一列仍然是常向量,代表信号均值或者直流分量。是一个频率为零的波,第三列则以最高的频率改变。傅里叶变换将信号分解成等间隔频率的波。傅里叶矩阵绝对是数学、科学和工程学领域最重要的复数矩阵,快速傅里叶变化通过加速傅里叶变化的过程,彻底改变了工业界。漂亮的是傅里叶矩阵和其逆矩阵非常像,改变一下符号即可。

线性代数之——基变换矩阵_第8张图片

4. 一点备忘

假设第一组基为 ,第二组基为 ,由 的基变换矩阵为 ,那么我们有:

一个向量 在 和 下的坐标分别为 和 ,那么我们有:

获取更多精彩,请关注「seniusen」!


线性代数之——基变换矩阵_第9张图片

你可能感兴趣的:(线性代数之——基变换矩阵)