- 学习TypeScript(一)
家里有只小肥猫
学习typescriptjavascript
Ts静态类型可以直接在编译器进行类型检查js动态类型在代码执行期的时候才会进行类型检查好处优势程序中任何位置的代码都会有错误提示,避免浪费时间提高维护性让代码重构更容易只需要修改类型就可以全局安装打开cmd电脑全局安装npmi-gtypescript检查是否安装成功tsc-vTypeScript入门教程1.安装TypeScriptnpminstall-gtypescript2.创建TypeScri
- 深度ResUnet与ResUnet++:新一代的语义分割神器
倪澄莹George
深度ResUnet与ResUnet++:新一代的语义分割神器去发现同类优质开源项目:https://gitcode.com/在这个数据驱动的时代,深度学习模型在图像处理领域展现出了强大的潜力,尤其是在语义分割任务中。今天,我们向您推荐一个基于PyTorch实现的开源项目——DeepResUnet和ResUnet++。这两个模型源自于学术界的最新研究,旨在提高图像分割的准确性和效率。项目介绍这个开源
- 学习ASP.NET Core的身份认证(基于JwtBearer的身份认证9)
gc_2299
网页编程JwtBear身份认证
测试数据库中只有之前记录温湿度及烟雾值的表中数据较多,在该数据库中增加AppUser表,用于登录用户身份查询,数据库表如下所示: 项目中安装SqlSugarCore包,然后修改控制器类的登录函数及分页查询数据函数,将之前函数中的固定数据修改为从数据库中查询数据,并将分页查询数据函数中返回数据集合修改为返回环境检测数据的集合,主要调整的代码如下所示。客户端页面中的JavaScript代码主要修
- 医学类 使用TransUNet、UNet、DeepLabV3+、HRNet、PSPNet 模型对息肉分割数据集进行训练、评估和可视化 EDD2020息肉数据集分割数据集
计算机C9硕士_算法工程师
数据集语义分割医学类数据集语义分割息肉TransUNetUNet
息肉数据集/息肉瘤分割项目解决(已处理好:EDD2020数据集(EndoscopyDiseaseDetectionandSegmentationChallenge)该息肉分割数据集主要包含人体生长的(肠胃)息肉用于器官内部息肉瘤分割,息肉目标检测,息肉定位任务息肉分割是一个重要的医学影像分析任务,特别是在内窥镜检查中。EDD2020数据集是一个很好的起点。我们将使用几种流行的深度学习模型(如Tra
- 单片机基础模块学习——数码管(二)
promising-w
单片机单片机嵌入式硬件蓝桥杯
一、数码管模块代码这部分包括将数码管想要显示的字符转换成对应段码的函数,另外还包括数码管显示函数值得注意的是对于小数点和不显示部分的处理方式由于小数点没有单独占一位,所以这里用到了两个变量i,j用于跳过小数点导致的占据其他字符显示在数码管上的位置不想让某一位数码管显示的时候,用空格来代替,根据共阳数码管原理图,应将P0引脚全部设为高电平才可熄灭#include"seg.h"//段码转换函数//0x
- Effective C++ 规则43:学习处理模板化基类内的名称
哎呦,帅小伙哦
C++c++
1、背景在C++中,模板化基类为我们提供了强大的灵活性。然而,模板化基类的名称查找却经常会引发困惑,甚至导致编译错误。这是因为模板的名称查找规则与普通类不同。在普通类中,派生类可以直接访问基类的成员变量和成员函数,因为这些名称在编译时是确定的。然而,在模板化基类中,由于基类的定义依赖于模板参数,其成员的名称查找需要更多的信息来完成。如果派生类也是模板类,那么基类的成员名称只有在模板参数确定之后才能
- Python | 基于支持向量机(SVM)的图像分类案例
python收藏家
python机器学习python机器学习
支持向量机(SVM)是一种监督机器学习算法,可用于分类和回归任务。在本文中,我们将重点关注使用SVM进行图像分类。当计算机处理图像时,它将其视为二维像素阵列。数组的大小对应于图像的分辨率,例如,如果图像是200像素宽和200像素高,则数组的尺寸为200x200x3。前两个维度分别表示图像的宽度和高度,而第三个维度表示RGB颜色通道。数组中的值范围为0到255,表示每个点处像素的强度。为了使用SVM
- k8s-实战——ES集群部署
北城 半夏
k8s-实战kuberneteselasticsearchjava
文章目录yaml文件es-pvc.yamles-svc.yamles-cluster-sts.yaml创建elasticsearch集群yaml文件es-pvc.yaml通过nfs服务进行新增pv并通过labels关联pvc前置准备需要提前准备pv的服务器以及挂在路径---apiVersion:v1kind:PersistentVolumemetadata:name:nfs-es-pv-data-
- Python生成成绩报告单:从理论到实践
Tech Synapse
python开发语言
在教育信息化日益普及的今天,自动化生成和处理学生成绩报告单已成为学校和教育机构的一项重要任务。Python作为一种功能强大且易于学习的编程语言,非常适合用于这种数据处理和报告生成任务。本文将详细介绍如何使用Python生成成绩报告单,包括理论概述和完整的代码示例。一、理论概述1.数据存储与处理生成成绩报告单的第一步是存储和处理学生成绩数据。常见的数据存储方式包括CSV文件、Excel文件和数据库。
- Redis学习笔记
csdn_bobo_6
redis学习数据库
认识NoSQLNoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,特别是大数据应用难题。NoSQL特点方便扩展(
- CTF学习笔记——[ACTF2020 新生赛]BackupFile
Obs_cure
网络安全
一、[ACTF2020新生赛]BackupFile1.题目2.解题步骤看了一眼源码什么都没有。难道要暴力扫目录?先试试flag.php阿这还真有…但是还是什么都没有显示。再试试index.php的备份呢?备份有点东西。审计一下发现是弱类型。这段源码的大意就是输入一个key变量,如果key=str(123ffwsfwefwf24r2f32ir23jrw923rskfjwtsw54w3),那么打印fl
- L8打卡学习笔记
无涯学徒1998
学习笔记支持向量机
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊SVM与集成学习SVMSVM线性模型SVM非线性模型SVM常用参数集成学习随机森林导入数据查看数据信息数据分析随机森林模型预测结果结果分析个人总结SVM超平面:SVM在特征空间中寻找一个能够最大化类别间隔的超平面,称为最大间隔超平面。这个超平面就是将数据集分成不同类别的边界。支持向量:支持向量是离分隔超平面最近的样本点,它们决定了超平面的
- P5学习笔记
无涯学徒1998
pythonpytorch
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊运动鞋品牌识别设置GPU导入数据构建CNN模型编写训练函数编写测试函数设置动态学习率等间隔动态调整自定义调整多间隔调整余弦退火正式训练结果可视化使用模型进行预测个人总结设置GPUimporttorchimporttorch.nnasnnimporttorchvision.transformsastransformsimporttorchv
- 【学习笔记】昇思25天学习打卡(D14)CV05-SSD目标检测.ipynb
UnseenMe
昇思学习笔记目标检测
SSD目标检测模型简介SSD,全称SingleShotMultiBoxDetector,是WeiLiu在ECCV2016上提出的一种目标检测算法。使用NvidiaTitanX在VOC2007测试集上,SSD对于输入尺寸300x300的网络,达到74.3%mAP(meanAveragePrecision)以及59FPS;对于512x512的网络,达到了76.9%mAP,超越当时最强的FasterRC
- 每日一题洛谷P1420 最长连号c++
wen__xvn
洛谷c++算法数据结构
#includeusingnamespacestd;intmain(){intn;cin>>n;ints[1000]={0};for(inti=0;i>s[i];}intmax=1;intt=1;for(inti=0;imax){max=t;}}else{t=1;}}cout<<max<<endl;return0;}
- 快速入门使用Redis缓存
阳光宅男dh
进阶学习redis缓存数据库
Redis简介Redis是一个高性能的内存数据库,以key-value方式存储数据,可以作为缓存使用。为什么使用缓存?高并发MySQL的连接数存在瓶颈,连接过大可能导致MySQL宕机解决方法:部署多个MySQL服务,主从复制部署缓存,承担一部分的并发高性能基于内存,内存IO效率远远高于磁盘Redis的特点:性能高(读的速度是110000次/s,写的速度是81000次/s,单机redis支撑万级并发
- 华为OD机试E卷 --响应报文时间 --24年OD统一考试(Java & JS & Python & C & C++)
飞码创造者
最新华为OD机试题库2024华为odjavajavascriptc++c语言python
文章目录题目描述输入描述输出描述用例题目解析JS算法源码Java算法源码python算法源码c算法源码c++算法源码题目描述IGMP协议中,有一个字段称作最大响应时间(MaxResponseTime),HOST收到查询报文,解折出MaxResponsetime字段后,需要在(0,MaXxResponseTime]时间(s)内选取随机时间回应一个响应报文,如果在随机时间内收到一个新的查询报文,则会根
- 【gopher的java学习笔记】一文讲懂controller,service,mapper,entity是什么
ThisIsClark
gopher的java学习笔记java学习笔记
刚开始上手Java和Spring时,就被controller,service,mapper,entity这几个词搞懵了,搞不懂这些究竟代表什么,感觉使用golang开发的时候也没太接触过这些名词啊~经过两三个月的开发后,逐渐搞懂了这几个词的意义,也对为什么要这么分有了一点见解,总结了一下希望能帮到各位刚刚接触Java和Spring的同学。组件介绍Entity(实体)作用:代表数据库中的表结构,是数
- 题解 洛谷 Luogu P2853 [USACO06DEC] Cow Picnic S 搜索 C++
qwq_ovo_pwp
c++数据结构算法图论
题目传送门P2853[USACO06DEC]CowPicnicS-洛谷|计算机科学教育新生态https://www.luogu.com.cn/problem/P2853思路分别以每头奶牛所在的牧场为起点进行搜索,每轮搜索不重复搜用计数变量统计每个牧场被搜到到的次数,次数=奶牛总数,就计入答案代码#include#includeusingnamespacestd;constintK=105,N=10
- 深度学习中高斯噪声:为什么以及如何使用
小白学视觉
深度学习人工智能
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达来源:DeepHubIMBA本文约1800字,建议阅读8分钟高斯噪声是深度学习中用于为输入数据或权重添加随机性的一种技术。在数学上,高斯噪声是一种通过向输入数据添加均值为零和标准差(σ)的正态分布随机值而产生的噪声。正态分布,也称为高斯分布,是一种连续概率分布,由其概率密度函数(PDF)定义:pdf(x)=(1/(σ*sqrt(
- 深度强化学习在高频交易中的动态策略优化与收益提升
二进制独立开发
非纯粹GenAIGenAI与Pythonpython人工智能神经网络自然语言处理生成对抗网络金融数据挖掘
文章目录1.高频交易的核心挑战与强化学习的适应性1.1高频交易中的核心问题1.2强化学习的适配性分析2.基于深度Q网络(DQN)的高频交易策略设计2.1状态空间构建:从LOB到特征工程2.2动作空间与奖励函数设计2.3DQN模型架构与训练优化3.业务视角下的策略优化与风险管理3.1策略有效性验证3.2实时部署与延迟优化3.3合规与伦理考量4.实验:基于NASDAQLOB数据的策略对比4.1数据集与
- 算法学习019 BFS实现迷踪步 c++算法学习 中小学算法思维学习 比赛算法题解 信奥算法解析
小兔子编程
信奥算法详解算法宽度优先BFSC++BFS广度优先算法c++迷宫步数c++迷踪步
C++BFS实现迷踪步一、题目要求1、编程实现有一个n行m列的方格迷宫,用0表示可以通过,用1表示不可以通过,每一步可以向上、下、左、右任意方向移动一格,请计算从左上角(1,1)位置移动到右下角(n,m)位置,最少移动多少步?2、输入输出输入描述:第一行输入矩阵大小n和m
- 软件工程 案例分析作业
SoftwareTeacher
编程语言人工智能javapython大数据
现代软件工程构建之法作业https://bbs.csdn.net/forums/SoftwareEngineering?typeId=1723软件工程作业案例分析很多同学有疑惑:软件工程课是否就是枯燥的理论课?或者是几个牛人拼命写代码,其他人抱大腿的课?要不然就是学习一个程序语言,练习某个框架,搞一个职业培训的课?都不对!软件工程有理论,有实践,更重要的是分析,思辨,总结。在课程中,同学们自己组织
- 理解inode
zhanshenyn
linuxtableunixfile存储user
inode是一个重要概念,是理解Unix/Linux文件系统和硬盘储存的基础。我觉得,理解inode,不仅有助于提高系统操作水平,还有助于体会Unix设计哲学,即如何把底层的复杂性抽象成一个简单概念,从而大大简化用户接口。下面就是我的inode学习笔记,尽量保持简单。===================================理解inode作者:阮一峰一、inode是什么?理解inode
- 【机器学习】必会降维算法之:多维缩放(MDS)
Carl_奕然
机器学习算法人工智能
多维缩放(MDS)1、引言2、多维缩放(MDS)2.1定义2.2应用场景2.3核心原理2.4实现方式2.5算法公式2.6代码示例3、总结1、引言小鱼:最近小屌丝在休假,难得的清闲,我这也闲言少叙,书归正传,咱就聊一聊降为算法之:多维缩放(MDS)在机器学习和数据科学领域,多维缩放(MultidimensionalScaling,简称MDS)是一种常用的降维技术。它能够在尽可能保留原始数据点间距离的
- 【NTN 卫星通信】关于卫星通信的一次访谈
一只好奇的猫2
NTN卫星通信卫星通信NTNstarlink波束覆盖
1概述 通过CSDN的途径,有个咨询公司找到我,说是有投资公司看到我的博客,希望做一次访谈,我回答了10个问题,现在发到博客上;很多观点都是自己根据经验拍的,并没有严格的计算,有兴趣的看看就好,有些问题还挺有趣的。2访谈问题以及回复1、对于一个信号发生设备,如通信基站,其理论最大信道容量(网速,bit/s)和其通信频率(Hz)、功率(W)的数学关系是什么,能否用公式表示。答复:这个问题可以直接由
- docker builds not a command
Zack Snyder
dockereureka容器运维云原生
我整理的一些关于【Docker】的项目学习资料(附讲解~~)和大家一起分享、学习一下:https://d.51cto.com/xltfov理解Docker和构建过程中的命令问题:处理“dockerbuildsnotacommand”错误Docker是一种流行的容器化技术,它允许开发者将应用程序及其所有依赖项打包到一个标准化的单元(容器)中,确保应用在任何环境中都能一致地运行。然而,在使用Docke
- 智能推理的革命:DeepSeek-R1 深度解析其算法与实现
步子哥
算法人工智能
在人工智能(AI)领域,语言模型(LargeLanguageModels,LLMs)正以惊人的速度发展,变得越来越智能,能够理解和生成复杂的语言内容。然而,尽管现有的模型在许多任务上表现出色,它们在深度推理和逻辑思维方面仍有显著的提升空间。DeepSeek-R1的出现,正是为了解决这一问题,通过强化学习(ReinforcementLearning,RL)赋予语言模型更强大的推理能力,开创了LLMs
- 转帖-在Eclipse中开发JSF
ren_z_q
JSFEclipseBeanJSPOracle
(转自http://www.blogjava.net/gaofeng/articles/127842.html作者:Java.net)Eclipse3.3刚刚发布,正在学习JSF,于是使用Eclipse3.3做了一个JSF的Demo,很简单,主要是页面的跳转、组件和Bean的绑定等基础...1、工具准备:Eclipse3.3WTP2.0(最好下载一个all-in-one的版本..省的麻烦)...依
- C语言条件语句if-else和switch-case练习
Smoke filled ゞ away
c语言算法开发语言
下面的一段程序的输出结果为()#includeintmain(){if(-1)printf("1");elseprintf("2");if(0)printf("3");elseprintf("4");return0;}A.23B.24C.13D.14由于非零即为真,所以选择D选项。()设ints=100,要输出字符串"s的值是100"应使用下列哪个语句?(山东精电电气)A.printf("s的值是
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$