- Python包版本分析工具开发:从PyPI私有源快速提取元数据
YoungHong1992
pythonwindows开发语言
importsubprocessimportreimportosimportsysimporttempfileimportzipfilefromemail.parserimportParserfromtypingimportList,Dict,Optional,Anyfromjinja2importEnvironmentfrompackaging.versionimportparseasparse
- 深入解析 SAE 训练输出文件:结构与意义
阿正的梦工坊
LLM语言模型人工智能自然语言处理
深入解析SAE训练输出文件:结构与意义在利用SAELens框架进行稀疏自编码器(SparseAutoencoder,SAE)训练时,训练完成后会生成一组关键文件,这些文件记录了模型的权重、状态以及相关信息。本文将详细解析路径SAELens/tutorials/checkpoints/n78ngo5e/final_122880000下生成的四个文件:activations_store_state.s
- ImportError: /nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkComplete_12_4
爱编程的喵喵
Python基础课程pythonImportErrortorchnvJitLink解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了ImportError:/home/
- 区间求最值问题高效解决方法
东皇太星
python
对于区间求最值场景,如果区间不定长度的,可以使用稀疏表进行求解,如果区间是固定长度的,则可以使用分块的思想(与稀疏表原理类似),都是通过压缩状态个数,1关于稀疏表的原理详见:稀疏表(SparseTable,ST原理及应用场景下面是一个稀疏表的python实现classSolution:def__init__(self,nums):self.nums=numsself.init_value=-999
- PillarNet: Real-Time and High-PerformancePillar-based 3D Object Detection
justtoomuchforyou
目标检测人工智能计算机视觉智驾
ECCV2022paper:[2205.07403]PillarNet:Real-TimeandHigh-PerformancePillar-based3DObjectDetectioncode:https://github.com/VISION-SJTU/PillarNet-LTS纯点云基于pillar3D检测模型网络比较SECOND基于voxel,one-stage,基于sparse3Dc
- Spark eventlog 、Event、SparkListener
zhixingheyi_tian
sparkspark大数据分布式
SparkListenerSQLExecutionStartcaseclassSparkListenerSQLExecutionStart(executionId:Long,//iftheexecutionisaroot,thenrootExecutionId==executionId//iftheeventisparsedfromtheeventlogthatgeneratedbySparkno
- 大模型RAG系统面试题及参考答案
大模型大数据攻城狮
算法大模型智能体aiagentpython面试向量数据库RAG
目录什么是RAG?它由哪些核心部分组成?RAG与传统的LLM(如GPT)生成方式有何区别?RAG的设计初衷是什么?解决了哪些问题?检索器(Retriever)在RAG中的作用是什么?生成器(Generator)如何与检索器交互?什么是向量检索(denseretrieval)与稀疏检索(sparseretrieval)?举例说明。RAG如何减少“幻觉(hallucination)”?为什么说RAG可
- S4-Driver: Scalable Self-Supervised Driving Multimodal Large Language Model with Spatio-Temporal
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
文章主要内容总结本文提出了一种基于多模态大语言模型(MLLM)的可扩展自监督自动驾驶运动规划框架S4-Driver,旨在解决端到端自动驾驶中依赖人工标注和3D空间推理能力不足的问题。核心方法包括:稀疏体表示(SparseVolumeRepresentation):将多视图、多帧图像的视觉信息聚合到3D空间,通过轻量级投影和门控机制动态选择关键区域,增强模型的3D时空推理能力,且无需微调预训练的视觉
- OpenCV CUDA 模块光流计算------稀疏光流算法类SparsePyrLKOpticalFlow
村北头的码农
OpenCVopencv算法人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCVCUDA模块中实现的稀疏光流算法类,基于Lucas-Kanade方法,并支持图像金字塔结构。适用于特征点跟踪任务(如角点、FAST特征等)。创建对象方法静态函数:create()staticPtrcv::cuda::SparsePyrLKOptical
- 13-Oracle 23ai Vector Search VECTOR数据类型和实操
远方1609
oracle数据库ai
一、Vector数据类型梗概Oracle23ai引入的VECTOR数据类型是AI向量搜索的核心基础,专为存储高维数值向量设计(如文本/图像/音视频的嵌入向量)。相比传统数据类型,它具有:多维度支持:维度数(1-65535),*表示任意维度多种数值格式:INT8/FLOAT32/FLOAT64/BINARY,智能存储优化:支持DENSE/SPARSE存储格式,storage_type:DENSE(默
- 协同过滤(Collaborative Filtering)与基于内容过滤(Content-Based Filtering)
土豆羊626
机器学习算法机器学习人工智能
以下是协同过滤(CollaborativeFiltering)与基于内容过滤(Content-BasedFiltering)的对比分析:协同过滤协同过滤的核心思想是通过用户的历史行为(如评分、点击、购买等)发现用户之间的相似性或物品之间的相似性,从而推荐用户可能感兴趣的物品。它分为两类:基于用户的协同过滤和基于物品的协同过滤。基于用户的协同过滤通过找到与目标用户兴趣相似的其他用户,推荐这些用户喜欢
- RISC-V 开发板 + Ubuntu 23.04 部署 open_vins 过程
地衣君
SLAMrisc-vubuntulinux
RISC-V开发板+Ubuntu23.04部署open_vins过程1.背景介绍2.问题描述3.解决过程3.1卸载旧版本3.2安装Suitesparsev5.8.03.3安装CeresSolverv2.0.03.4解决编译爆内存问题同步发布在个人笔记RISC-V开发板+Ubuntu23.04部署open_vins过程1.背景介绍最近遇到一个需求,就是在RISC-V开发板:进迭时空MUSEPiPro
- nohup: 无法运行命令‘Command‘: 没有那个文件或目录
Asuyio
遇到的问题Linuxlinuxubuntu
使用下面代码nohup`pythonprojects/SparseRCNN/train_net.py--num-gpus2--config-fileprojects/SparseRCNN/configs/sparsercnn.res50.100pro.3x.yaml`&报错:--Process1terminatedwiththefollowingerror:Traceback(mostrecent
- Enhanced Sparse Model for Blind Deblurring论文阅读
青铜锁00
#退化论文阅读论文阅读图像处理
EnhancedSparseModelforBlindDeblurring1.研究目标与意义1.1研究目标1.2实际意义与产业价值2.论文提出的新思路、方法及模型2.1增强稀疏模型(EnhancedSparseModel,lel_ele)模型定义与数学表达闭式解与稀疏性增强机制2.2改进的噪声建模策略噪声拟合函数的构建空间随机性建模2.3整体优化框架与半二次分裂法目标函数设计优化步骤拆分参数设置与
- 【推荐算法】推荐系统核心算法深度解析:协同过滤 Collaborative Filtering
白熊188
推荐算法算法机器学习人工智能推荐算法推荐
推荐系统核心算法深度解析:协同过滤一、协同过滤的算法逻辑协同过滤的两种实现方式二、算法原理与数学推导1.相似度计算关键公式2.矩阵分解(MF)进阶三、模型评估1.准确性指标2.排序指标(Top-N推荐)3.多样性&新颖性四、应用案例五、面试常见问题六、详细优缺点优点缺点七、优化方向总结一、协同过滤的算法逻辑协同过滤的核心思想是利用群体智慧:假设:相似用户对物品有相似偏好,相似物品会被相似用户喜欢。
- 25.5.22学习总结
The_cute_cat
学习
ST表(SparseTable,稀疏表)是一种用于高效解决静态区间最值查询(RMQ)问题的数据结构。其核心思想是通过预处理每个长度为2^j的区间的最值,使得查询时只需合并两个子区间的最值即可得到结果,从而实现O(1)的查询复杂度。一、核心特性预处理时间复杂度:O(nlogn)查询时间复杂度:O(1)适用场景:静态数据(无修改操作)的区间最值查询。支持操作:可重复贡献且可结合的运算(如最大值、最小
- Unnatural L0 Sparse Representation for Natural Image Deblurring论文阅读
青铜锁00
论文阅读#退化论文阅读图像处理
UnnaturalL0SparseRepresentationforNaturalImageDeblurring1.论文的研究目标与实际问题意义1.1研究目标1.2实际问题与产业意义2.论文的创新方法、模型与优势2.1核心思路2.2关键公式与技术细节2.2.1L0稀疏函数定义(公式5)2.2.2目标函数(公式6)2.2.3优化过程(公式7-8、公式10)2.2.4非均匀模糊处理(公式13)2.3优
- SGLang和vllm比有什么优势?
玩人工智能的辣条哥
人工智能大模型推理框架vllmSGLang
环境:SGLangvllm问题描述:SGLang和vllm比有什么优势?解决方案:SGLang和vLLM都是在大语言模型(LLM)推理和部署领域的开源项目或框架,它们各自有不同的设计目标和优势。下面我综合目前公开信息,详细对比两者的特点和优势。一、项目背景SGLang:通常指的是“Sparse-GatedLanguagemodels”或者是特定的推理框架名称(有时项目名可能不太统一),目标是通过稀
- java 域名解析
hoochiang
javajava域名解析
importjava.net.InetAddress;importjava.net.UnknownHostException;publicclassParseDomainName{InetAddressmyServer=null;InetAddressmyIPaddress=null;StringdomainName=null;publicParseDomainName(StringdomainN
- Cribl 中 Parser 扮演着重要的角色 + 例子
shenghuiping2001
splunksplunkcriblparserfilterfunction
先看文档:Parser|CriblDocsParserTheParserFunctioncanbeusedtoextractfieldsoutofeventsorreserialize(rewrite)eventswithasubsetoffields.Reserializationwillpreservetheformatoftheevents.Forexample,ifaneventconta
- 《算法导论(第4版)》阅读笔记:p76-p81
codists
读书笔记算法
《算法导论(第4版)》学习第16天,p76-p81总结,总计7页。一、技术总结1.densematrix(密集矩阵)&sparsematrix(稀疏矩阵)、(1)定义Generally,we’llassumethatthematricesaredense,meaningthatmostofthen²entriesarenot0,asopposedtosparse,wheremostofthen²e
- 如何深入学习MATLAB的高级应用?
tyatyatya
MATLAB教程学习matlab开发语言
文章目录要深入学习MATLAB的高级应用,需要在掌握基础语法后,系统性地学习特定领域的工具箱和算法,并通过实战项目提升能力。以下是分阶段的学习路径和资源推荐:一、深化核心技能高级矩阵运算与线性代数matlab%稀疏矩阵处理A=sparse([100;020;003]);%创建稀疏矩阵spy(A);%可视化稀疏结构%特征值分解与SVD[V,D]=eig(A);%特征值分解[U,S,V]=svd(A)
- Hierarchical Sparse Subspace Clustering (HESSC): An Automatic Approach for Hyperspectral Image Analy
爱喝两碗汤
跨场景域适应遥感图像分类机器学习人工智能图像处理
分层稀疏子空间聚类(HESSC):一种用于高光谱图像分析的自动方法作者:KasraRafiezadehShahi1,∗,MahdiKhodadadzadeh1,LauraTusa1,PedramGhamisi1,RaimonTolosana-Delgado2,RichardGloaguen1德国弗莱贝格09599,赫尔姆霍兹-德累斯顿-罗森多夫中心(HZDR),赫尔姆霍兹弗莱贝格资源技术研究所(H
- 《算法导论(第4版)》阅读笔记:p76-p81
算法
《算法导论(第4版)》学习第16天,p76-p81总结,总计7页。一、技术总结1.densematrix(密集矩阵)&sparsematrix(稀疏矩阵)、(1)定义Generally,we’llassumethatthematricesaredense,meaningthatmostofthen²entriesarenot0,asopposedtosparse,wheremostofthen²e
- nlp实战--召回实战训练
济世青天
机器学习人工智能
youtobe召回--双塔模型实战使用的数据集是MovieLens1M,使用其中5个user特征'user_id','gender','age','occupation','zip',2个item特征"movie_id","cate_id",一共7个sparse特征。任务描述:已知用户过去的电影观看(评论)行为,预测该用户观看(评论)另外一种电影的可能性(在本文中,用0/1的标签表示预测和真实结果
- 数据结构·ST表
0xMayL
数据结构
ST表(SparseTable)可重复贡献问题xoptx=xx\opt\x=xxoptx=x:如果两个区间重复计算某些元素时,对重复元素进行optoptopt操作没有任何影响理解ST表的思想是倍增,每一次处理上一次处理的两倍的元素,倍增的方式有重叠部分,如果重叠部分可重复贡献,则倍增的思路是正确的。长度:intlen=log2(n),向下取整,避免出现无效元素参与计算构造时的递推公式:amax[j
- 【论文阅读】Attentive Collaborative Filtering:
hongjianMa
#多模态-论文阅读论文阅读推荐系统推荐算法多模态自注意力机制深度学习
AttentiveCollaborativeFiltering:MultimediaRecommendationwithItem-andComponent-LevelAttentionAttentiveCollaborativeFiltering(ACF)、隐式反馈推荐、注意力机制、贝叶斯个性化排序标题翻译:注意力协同过滤:基于项目和组件级注意力的多媒体推荐原文地址:点这里摘要多媒体内容正主导着当
- 稀疏表示综述:A Survey of Sparse Representation: Algorithms and Applications_2015(2)
mingo_敏
PaperReadingsparsestrategyapplications
稀疏表示综述:ASurveyofSparseRepresentation:AlgorithmsandApplications_2015(2)本文地址:http://blog.csdn.net/shanglianlm/article/details/46866803VI.基于邻近算法的优化策略(PROXIMITYALGORITHMBASEDOPTIMIZATIONSTRATEGY)proximity
- 从零学习大模型(一)-----GPT3(上)
懒惰才能让科技进步
大语言模型gpt-3人工智能深度学习语言模型chatgptpython
GPT-3(GenerativePre-trainedTransformer3)是一种大型自回归语言模型,由OpenAI团队训练和发布。GPT-3拥有1750亿个参数,是当时发布的最大的非稀疏(non-sparse)语言模型之一。其参数规模是前一代模型(如GPT-2)的10倍以上。GPT-3的目标是通过大规模的参数量和广泛的预训练来实现对多种语言任务的few-shot学习,即通过少量示例而无需额外
- 表驱动 FSM 在 STM32 上的高效实现与内存压缩优化——源码、性能与实践
damo王
嵌入式嵌入式stm32fsm表驱动
目录一、引言与背景二、前提环境与依赖三、表驱动FSM核心原理四、内存压缩方案详解4.1稠密二维表(DenseTable)4.2稀疏表压缩(SparseTable)4.3行压缩+Offset4.4位域打包(Bit‑Packing)
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分