将tensorflow训练好的模型移植到android上
说明
本文将描述如何将一个训练好的模型植入到android设备上,并且在android设备上输入待处理数据,通过模型,获取输出数据。
通过一个例子,讲述整个移植的过程。(demo的源码访问github上了https://github.com/CrystalChen1017/TSFOnAndroid)
整体的思路如下:
- 使用python在PC上训练好你的模型,保存为pb文件
- 新建android project,把pb文件放到assets文件夹下
- 将tensorflow的so文件以及jar包放到libs下
- 加载库文件,让tensorflow在app中运行起来
准备
- tensorflow的环境,参阅http://blog.csdn.net/cxq234843654/article/details/70857562
- libtensorflow_inference.so
- libandroid_tensorflow_inference_java.jar
- 如果要自己编译得到以上两个文件,需要安装bazel。参阅http://blog.csdn.net/cxq234843654/article/details/70861155 的第2步
以上两个文件通过以下两个网址进行下载:
https://github.com/CrystalChen1017/TSFOnAndroid/tree/master/app/libs
或者
http://download.csdn.net/detail/cxq234843654/9833372
PC端模型的准备
这是一个很简单的模型,输入是一个数组matrix1,经过操作后,得到这个数组乘以2*matrix1。
- 给输入数据命名为
input
,在android端需要用这个input
来为输入数据赋值 - 给输输数据命名为
output
,在android端需要用这个output
来为获取输出的值 - 不能使用 tf.train.write_graph()保存模型,因为它只是保存了模型的结构,并不保存训练完毕的参数值
- 不能使用 tf.train.saver()保存模型,因为它只是保存了网络中的参数值,并不保存模型的结构。
-
graph_util.convert_variables_to_constants
可以把整个sesion当作常量都保存下来,通过output_node_names
参数来指定输出 -
tf.gfile.FastGFile('model/cxq.pb', mode='wb')
指定保存文件的路径以及读写方式 -
f.write(output_graph_def.SerializeToString())
将固化的模型写入到文件
# -*- coding:utf-8 -*-
import tensorflow as tf
from tensorflow.python.client import graph_util
session = tf.Session()
matrix1 = tf.constant([[3., 3.]], name='input')
add2Mat = tf.add(matrix1, matrix1, name='output')
session.run(add2Mat)
output_graph_def = graph_util.convert_variables_to_constants(session, session.graph_def,output_node_names=['output'])
with tf.gfile.FastGFile('model/cxq.pb', mode='wb') as f:
f.write(output_graph_def.SerializeToString())
session.close()
运行后就会在model文件夹下产生一个cxq.pb文件,现在这个文件将刚才一系列的操作固化了,因此下次需要计算变量乘2时,我们可以直接拿到pb文件,指定输入,再获取输出。
(可选的)bazel编译出so和jar文件
如果希望自己通过tensorflow的源码编译出so和jar文件,则需要通过终端进入到tensorflow的目录下,进行如下操作:
- 编译so库
bazel build -c opt //tensorflow/contrib/android:libtensorflow_inference.so \
-- crosstool_top=//external:android/crosstool \
-- host_crosstool_top=@bazel_tools//tools/cpp:toolchain \
-- cpu=armeabi-v7a
编译完毕后,libtensorflow_inference.so的路径为:
/tensorflow/bazel-bin/tensorflow/contrib/android
- 编译jar包
bazel build //tensorflow/contrib/android:android_tensorflow_inference_java
编译完毕后,android_tensorflow_inference_java.jar的路径为:
/tensorflow/bazel-bin/tensorflow/contrib/android
android端的准备
- 新建一个Android Project
- 把刚才的pb文件存放到assets文件夹下
- 将libandroid_tensorflow_inference_java.jar存放到/app/libs目录下,并且右键“add as Libary”
- 在/app/libs下新建armeabi文件夹,并将libtensorflow_inference.so放进去
配置app:gradle以及gradle.properties
- 在android节点下添加soureSets,用于制定jniLibs的路径
sourceSets {
main {
jniLibs.srcDirs = ['libs']
}
}
- 在defaultConfig节点下添加
defaultConfig {
ndk {
abiFilters "armeabi"
}
}
- 在gradle.properties中添加下面一行
android.useDeprecatedNdk=true
通过以上3步操作,tensorflow的环境已经部署好了。
模型的调用
我们先新建一个MyTSF类,在这个类里面进行模型的调用,并且获取输出
package com.learn.tsfonandroid;
import android.content.res.AssetManager;
import android.os.Trace;
import org.tensorflow.contrib.android.TensorFlowInferenceInterface;
public class MyTSF {
private static final String MODEL_FILE = "file:///android_asset/cxq.pb"; //模型存放路径
//数据的维度
private static final int HEIGHT = 1;
private static final int WIDTH = 2;
//模型中输出变量的名称
private static final String inputName = "input";
//用于存储的模型输入数据
private float[] inputs = new float[HEIGHT * WIDTH];
//模型中输出变量的名称
private static final String outputName = "output";
//用于存储模型的输出数据
private float[] outputs = new float[HEIGHT * WIDTH];
TensorFlowInferenceInterface inferenceInterface;
static {
//加载库文件
System.loadLibrary("tensorflow_inference");
}
MyTSF(AssetManager assetManager) {
//接口定义
inferenceInterface = new TensorFlowInferenceInterface(assetManager,MODEL_FILE);
}
public float[] getAddResult() {
//为输入数据赋值
inputs[0]=1;
inputs[1]=3;
//将数据feed给tensorflow
Trace.beginSection("feed");
inferenceInterface.feed(inputName, inputs, WIDTH, HEIGHT);
Trace.endSection();
//运行乘2的操作
Trace.beginSection("run");
String[] outputNames = new String[] {outputName};
inferenceInterface.run(outputNames);
Trace.endSection();
//将输出存放到outputs中
Trace.beginSection("fetch");
inferenceInterface.fetch(outputName, outputs);
Trace.endSection();
return outputs;
}
}
在Activity中使用MyTSF类
public void click01(View v){
Log.i(TAG, "click01: ");
MyTSF mytsf=new MyTSF(getAssets());
float[] result=mytsf.getAddResult();
for (int i=0;i