关于python 对车牌检测识别切割+TensorFlow预测

开题:

关于车牌定位分割自己网上找一大堆资料总结后,发布出来还望取之于网友,总结后在公布给网友,能够共同学习,刚接触python没多久,不乏有很多错误和不足,还望指正。

关于本文TensorFlow模型训练部分,来源于

https://blog.csdn.net/shadown1ght/article/details/78571187#comments

也是很感谢此博主的无私开源精神,大家可以前往学习。

代码是最好的老师,所有关于文章的全部代码资源会再文末网盘给出。

2019.4.25更新,更多关于多模型加载方案,请前往csdn博客查看这里不做同步更新了,谢谢理解
博客地址:https://blog.csdn.net/yang1159/article/details/88303461

首先说

1.python 用opencv的图片切割

cut_img = image[y:y+h, x:x+w]  # 裁剪坐标为[y0:y1, x0:x1]
image.gif

image为源图片,cut_image为切割后的图片

坐标(x0,y0) (x1,y1)关系如图:

关于python 对车牌检测识别切割+TensorFlow预测_第1张图片
image

image.gif

2.python 对图片的压缩处理,有两种

第一种是 用的opencv 库的threshold

cv.threshold(src_img, 100, 100, cv.THRESH_BINARY_INV, dec_img)
image.gif

src_img为源图片,dec_img为压缩后的图片,但我用这种方法处理后保存的图片大小并不是100*100,网上查资料也发现有网友和我一样的情况,或许我没用对,有清楚的还请指正,谢谢。

第二种 用 PIL库处理

from PIL import Image

im = Image.open("./py_car_num_tensor/num_for_car.jpg")
    size = 720, 180
    mmm = im.resize(size, Image.ANTIALIAS)
    mmm.save("./py_car_num_tensor/num_for_car.jpg", "JPEG", quality=95)
image.gif

这种方法可以直接获取到设定大小的图片

3.opencv对识别到车牌切割后做二值化处理

这里也尝试了三种方法:

第一次使用

img = cv2.imread("./py_car_num_tensor/num_for_car.jpg")  # 读取图片
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转换了灰度化
cv2.imshow('gray', img_gray)  # 显示图片
cv2.waitKey(0)
# 2、将灰度图像二值化,设定阈值是100  
img_thre = img_gray
# 灰点  白点 加错
cv2.threshold(img_gray, 130, 255, cv2.THRESH_BINARY_INV, img_thre)

cv2.imshow('threshold', img_thre)
cv2.imwrite('./py_car_num_tensor/wb_img.jpg', img_thre)
cv2.waitKey(0)
src=cv2.imread("./py_car_num_tensor/wb_img.jpg")
height, width, channels = src.shape
print("width:%s,height:%s,channels:%s" % (width, height, channels))
for row in range(height):
    for list in range(width):
        for c in range(channels):
            pv = src[row, list, c]
            src[row, list, c] = 255 - pv
cv2.imshow("AfterDeal", src)
image.gif

在车牌整洁、光照角度合适理想情况下确实可以,但遇到一些带泥水、曝光角度不对时,二值化后会有很多干扰源如:

关于python 对车牌检测识别切割+TensorFlow预测_第2张图片
image
image.gif

关于python 对车牌检测识别切割+TensorFlow预测_第3张图片
image
image.gif

第二次使用opencv文档说自动阈值 调节的

# 二值化处理 自适应阈值   效果不理想
img_thre = cv2.adaptiveThreshold(img_gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
image.gif

效果同样不太理想

第三次使用高斯除噪后在处理,效果堪称完美

# 高斯除噪 二值化处理
blur = cv2.GaussianBlur(img_gray,(5,5),0)
ret3,img_thre = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
image.gif
关于python 对车牌检测识别切割+TensorFlow预测_第4张图片
image
image.gif

关于python 对车牌检测识别切割+TensorFlow预测_第5张图片
image
image.gif

更多opencv 图片处理见opencv中文社区文档(翻译后)http://www.cnblogs.com/Undo-self-blog/p/8423851.html

4.对单个字符的剪切、压缩称制定比例

压缩上面已经将介绍了怎么压缩成指定大小,重点是识别字符坐标后的剪切,这一点在代码里也有很详细说明。

全部代码如下: 关于cascade.xml 获取 见下方网盘

'''
车牌框的识别 剪切保存
'''
# 使用的是HyperLPR已经训练好了的分类器
import os

import cv2
from PIL import Image
import test_province
import test_letters
import test_digits
import time
import numpy as np
import tensorflow as tf
from pip._vendor.distlib._backport import shutil

def find_car_num_brod():
    watch_cascade = cv2.CascadeClassifier('D:\PyCharm\Test213\py_car_num_tensor\cascade.xml')
    # 先读取图片
    image = cv2.imread("D:\PyCharm\Test213\py_car_num_tensor\capture_img\car31.jpg")
    resize_h = 1000
    height = image.shape[0]
    scale = image.shape[1] / float(image.shape[0])
    image = cv2.resize(image, (int(scale * resize_h), resize_h))
    image_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    watches = watch_cascade.detectMultiScale(image_gray, 1.2, 2, minSize=(36, 9), maxSize=(36 * 40, 9 * 40))

    print("检测到车牌数", len(watches))
    for (x, y, w, h) in watches:
        cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 1)
        cut_img = image[y + 5:y - 5 + h, x + 8:x - 15 + w]  # 裁剪坐标为[y0:y1, x0:x1]
        cut_gray = cv2.cvtColor(cut_img, cv2.COLOR_RGB2GRAY)

        cv2.imwrite("D:\PyCharm\Test213\py_car_num_tensor\\num_for_car.jpg", cut_gray)
        im = Image.open("D:\PyCharm\Test213\py_car_num_tensor\\num_for_car.jpg")
        size = 720, 180
        mmm = im.resize(size, Image.ANTIALIAS)
        mmm.save("D:\PyCharm\Test213\py_car_num_tensor\\num_for_car.jpg", "JPEG", quality=95)
        break

'''

剪切后车牌的字符单个拆分保存处理
'''

def cut_car_num_for_chart():
    # 1、读取图像,并把图像转换为灰度图像并显示
    img = cv2.imread("D:\PyCharm\Test213\py_car_num_tensor\\num_for_car.jpg")  # 读取图片
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转换了灰度化
    cv2.imshow('gray', img_gray)  # 显示图片
    cv2.waitKey(0)
    # 2、将灰度图像二值化,设定阈值是100   转换后 白底黑字 ---》 目标黑底白字
    img_thre = img_gray
    # 灰点  白点 加错
    # cv2.threshold(img_gray, 130, 255, cv2.THRESH_BINARY_INV, img_thre)

    # 二值化处理 自适应阈值   效果不理想
    # th3 = cv2.adaptiveThreshold(img_gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)

    # 高斯除噪 二值化处理
    blur = cv2.GaussianBlur(img_gray, (5, 5), 0)
    ret3, th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

    cv2.imshow('threshold', th3)
    cv2.imwrite('D:\PyCharm\Test213\py_car_num_tensor\wb_img.jpg', th3)
    cv2.waitKey(0)
    # src = cv2.imread("D:\PyCharm\Test213\py_car_num_tensor\wb_img.jpg")
    # height, width, channels = src.shape
    # print("width:%s,height:%s,channels:%s" % (width, height, channels))
    # for row in range(height):
    #     for list in range(width):
    #         for c in range(channels):
    #             pv = src[row, list, c]
    #             src[row, list, c] = 255 - pv
    # cv2.imshow("AfterDeal", src)
    # cv2.waitKey(0)
    #
    # # 3、保存黑白图片
    # cv2.imwrite('D:\PyCharm\Test213\py_car_num_tensor\wb_img.jpg', src)
    # img = cv2.imread("D:\PyCharm\Test213\py_car_num_tensor\wb_img.jpg")  # 读取图片
    # src_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转换了灰度化
    # src_img = src_gray

    # 4、分割字符
    white = []  # 记录每一列的白色像素总和
    black = []  # ..........黑色.......
    height = th3.shape[0]
    width = th3.shape[1]
    white_max = 0
    black_max = 0
    # 计算每一列的黑白色像素总和
    for i in range(width):
        s = 0  # 这一列白色总数
        t = 0  # 这一列黑色总数
        for j in range(height):
            if th3[j][i] == 255:
                s += 1
            if th3[j][i] == 0:
                t += 1
        white_max = max(white_max, s)
        black_max = max(black_max, t)
        white.append(s)
        black.append(t)
        print(str(s) + "---------------" + str(t))
    print("blackmax ---->" + str(black_max) + "------whitemax ------> " + str(white_max))
    arg = False  # False表示白底黑字;True表示黑底白字
    if black_max > white_max:
        arg = True

    n = 1
    start = 1
    end = 2
    temp = 1
    while n < width - 2:
        n += 1
        if (white[n] if arg else black[n]) > (0.05 * white_max if arg else 0.05 * black_max):
            # 上面这些判断用来辨别是白底黑字还是黑底白字
            # 0.05这个参数请多调整,对应上面的0.95
            start = n
            end = find_end(start, white, black, arg, white_max, black_max, width)
            n = end
            # 车牌框检测分割 二值化处理后 可以看到明显的左右边框  毕竟用的是网络开放资源 所以车牌框定位角度真的不准,
            # 所以我在这里截取单个字符时做处理,就当亡羊补牢吧
            # 思路就是从左开始检测匹配字符,若宽度(end - start)小与20则认为是左侧白条 pass掉  继续向右识别,否则说明是
            # 省份简称,剪切,压缩 保存,还有一个当后五位有数字 1 时,他的宽度也是很窄的,所以就直接认为是数字 1 不需要再
            # 做预测了(不然很窄的 1 截切  压缩后宽度是被拉伸的),shutil.copy(A,B)这个函数就是当检测        #到1时,从训练图片集里面复制一张标准的1的图片给当前这个temp位置的字符,不用再做压缩处理了
            if end - start > 5:  # 车牌左边白条移除
                print(" end - start" + str(end - start))
                if temp == 1 and end - start < 20:
                    pass
                elif temp > 3 and end - start < 20:
                    #  认为这个字符是数字1   copy 一个 32*40的 1 作为 temp.bmp
                    shutil.copy(os.path.join("D:\\PyCharm\\Test213\\py_car_num_tensor\\tf_car_license_dataset\\train_images\\"
                                             "training-set\\1", "111.bmp"),
                                os.path.join("D:\PyCharm\Test213\py_car_num_tensor\img_cut", str(temp)+'.bmp'))
                    pass
                else:
                    cj = th3[1:height, start:end]
                    cv2.imwrite("D:\PyCharm\Test213\py_car_num_tensor\img_cut_not_3240\\" + str(temp) + ".jpg", cj)
                    im = Image.open("D:\PyCharm\Test213\py_car_num_tensor\img_cut_not_3240\\" + str(temp) + ".jpg")
                    size = 32, 40
                    mmm = im.resize(size, Image.ANTIALIAS)
                    mmm.save("D:\PyCharm\Test213\py_car_num_tensor\img_cut\\" + str(temp) + ".bmp", quality=95)
                    # cv2.imshow('裁剪后:', mmm)
                    # cv2.imwrite("./py_car_num_tensor/img_cut/"+str(temp)+".bmp", cj)
                    temp = temp + 1
                    # cv2.waitKey(0)

# 分割图像
def find_end(start_, white, black, arg, white_max, black_max, width):
    end_ = start_ + 1
    for m in range(start_ + 1, width - 1):
        if (black[m] if arg else white[m]) > (0.95 * black_max if arg else 0.95 * white_max):  # 0.95这个参数请多调整,对应下面的0.05
            end_ = m
            break
    return end_

'''
车牌号码 省份检测:粤   [粤G .SB250]  
'''
SIZE = 1280
WIDTH = 32
HEIGHT = 40
# NUM_CLASSES = 7
PROVINCES = ("京", "闽", "粤", "苏", "沪", "浙", "豫")
nProvinceIndex = 0
time_begin = time.time()
# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, 7])

x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])

# 定义卷积函数
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
    L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
    L1_relu = tf.nn.relu(L1_conv + b)
    return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')

# 定义全连接层函数
def full_connect(inputs, W, b):
    return tf.nn.relu(tf.matmul(inputs, W) + b)

def province_test():
    saver_p = tf.train.import_meta_graph(
        "D:\\PyCharm\\Test213\\py_car_num_tensor\\train-saver\\province\\car_province.ckpt.meta")
    with tf.Session() as sess_p:
        model_file = tf.train.latest_checkpoint("D:\\PyCharm\\Test213\\py_car_num_tensor\\train-saver\\province")
        saver_p.restore(sess_p, model_file)

        # 第一个卷积层
        W_conv1 = sess_p.graph.get_tensor_by_name("W_conv1:0")
        b_conv1 = sess_p.graph.get_tensor_by_name("b_conv1:0")
        conv_strides = [1, 1, 1, 1]
        kernel_size = [1, 2, 2, 1]
        pool_strides = [1, 2, 2, 1]
        L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')

        # 第二个卷积层
        W_conv2 = sess_p.graph.get_tensor_by_name("W_conv2:0")
        b_conv2 = sess_p.graph.get_tensor_by_name("b_conv2:0")
        conv_strides = [1, 1, 1, 1]
        kernel_size = [1, 1, 1, 1]
        pool_strides = [1, 1, 1, 1]
        L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')

        # 全连接层
        W_fc1 = sess_p.graph.get_tensor_by_name("W_fc1:0")
        b_fc1 = sess_p.graph.get_tensor_by_name("b_fc1:0")
        h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20 * 32])
        h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)

        # dropout
        keep_prob = tf.placeholder(tf.float32)

        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

        # readout层
        W_fc2 = sess_p.graph.get_tensor_by_name("W_fc2:0")
        b_fc2 = sess_p.graph.get_tensor_by_name("b_fc2:0")

        # 定义优化器和训练op
        conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
        for n in range(1, 2):
            path = "D:\\PyCharm\\Test213\\py_car_num_tensor\\img_cut\\%s.bmp" % (n)
            img = Image.open(path)
            width = img.size[0]
            height = img.size[1]
            img_data = [[0] * SIZE for i in range(1)]
            for h in range(0, height):
                for w in range(0, width):
                    if img.getpixel((w, h)) < 190:
                        img_data[0][w + h * width] = 1
                    else:
                        img_data[0][w + h * width] = 0

            result = sess_p.run(conv, feed_dict={x: np.array(img_data), keep_prob: 1.0})
            max1 = 0
            max2 = 0
            max3 = 0
            max1_index = 0
            max2_index = 0
            max3_index = 0
            for j in range(7):
                if result[0][j] > max1:
                    max1 = result[0][j]
                    max1_index = j
                    continue
                if (result[0][j] > max2) and (result[0][j] <= max1):
                    max2 = result[0][j]
                    max2_index = j
                    continue
                if (result[0][j] > max3) and (result[0][j] <= max2):
                    max3 = result[0][j]
                    max3_index = j
                    continue

            nProvinceIndex = max1_index
            print("概率:  [%s %0.2f%%]    [%s %0.2f%%]    [%s %0.2f%%]" % (
                PROVINCES[max1_index], max1 * 100, PROVINCES[max2_index], max2 * 100, PROVINCES[max3_index],
                max3 * 100))
        sess_p.close()
        print("省份简称是: %s" % PROVINCES[nProvinceIndex])

'''

车牌号码第二个字符识别:G   [粤G .SB250]
'''

SIZE = 1280
WIDTH = 32
HEIGHT = 40
# NUM_CLASSES = 24
LETTERS_DIGITS = (
    "A", "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y",
    "Z")

time_begin = time.time()

# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, 24])

x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])

# 定义卷积函数
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
    L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
    L1_relu = tf.nn.relu(L1_conv + b)
    return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')

# 定义全连接层函数
def full_connect(inputs, W, b):
    return tf.nn.relu(tf.matmul(inputs, W) + b)

def province_letter_test():
    license_num = ""
    saver = tf.train.import_meta_graph("D:\\PyCharm\\Test213\\py_car_num_tensor\\train-saver\\letters\\model.ckpt.meta")
    with tf.Session() as sess:
        model_file = tf.train.latest_checkpoint("D:\\PyCharm\\Test213\\py_car_num_tensor\\train-saver\\letters")
        saver.restore(sess, model_file)

        # 第一个卷积层
        W_conv1 = sess.graph.get_tensor_by_name("W_conv1:0")
        b_conv1 = sess.graph.get_tensor_by_name("b_conv1:0")
        conv_strides = [1, 1, 1, 1]
        kernel_size = [1, 2, 2, 1]
        pool_strides = [1, 2, 2, 1]
        L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')

        # 第二个卷积层
        W_conv2 = sess.graph.get_tensor_by_name("W_conv2:0")
        b_conv2 = sess.graph.get_tensor_by_name("b_conv2:0")
        conv_strides = [1, 1, 1, 1]
        kernel_size = [1, 1, 1, 1]
        pool_strides = [1, 1, 1, 1]
        L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')

        # 全连接层
        W_fc1 = sess.graph.get_tensor_by_name("W_fc1:0")
        b_fc1 = sess.graph.get_tensor_by_name("b_fc1:0")
        h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20 * 32])
        h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)

        # dropout
        keep_prob = tf.placeholder(tf.float32)

        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

        # readout层
        W_fc2 = sess.graph.get_tensor_by_name("W_fc2:0")
        b_fc2 = sess.graph.get_tensor_by_name("b_fc2:0")

        # 定义优化器和训练op
        conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

        for n in range(2, 3):
            path = "D:\\PyCharm\\Test213\\py_car_num_tensor\\img_cut\\%s.bmp" % (n)
            img = Image.open(path)
            width = img.size[0]
            height = img.size[1]

            img_data = [[0] * SIZE for i in range(1)]
            for h in range(0, height):
                for w in range(0, width):
                    if img.getpixel((w, h)) < 190:
                        img_data[0][w + h * width] = 1
                    else:
                        img_data[0][w + h * width] = 0

            result = sess.run(conv, feed_dict={x: np.array(img_data), keep_prob: 1.0})

            max1 = 0
            max2 = 0
            max3 = 0
            max1_index = 0
            max2_index = 0
            max3_index = 0
            for j in range(24):
                if result[0][j] > max1:
                    max1 = result[0][j]
                    max1_index = j
                    continue
                if (result[0][j] > max2) and (result[0][j] <= max1):
                    max2 = result[0][j]
                    max2_index = j
                    continue
                if (result[0][j] > max3) and (result[0][j] <= max2):
                    max3 = result[0][j]
                    max3_index = j
                    continue

            if n == 3:
                license_num += "-"
            license_num = license_num + LETTERS_DIGITS[max1_index]
            print("概率:  [%s %0.2f%%]    [%s %0.2f%%]    [%s %0.2f%%]" % (
                LETTERS_DIGITS[max1_index], max1 * 100, LETTERS_DIGITS[max2_index], max2 * 100,
                LETTERS_DIGITS[max3_index],
                max3 * 100))
        sess.close()
        print("城市代号是: 【%s】" % license_num)

'''
车牌号码  后五位识别  SB250 [粤G .SB250]   
'''
SIZE = 1280
WIDTH = 32
HEIGHT = 40
# NUM_CLASSES = 34

LETTERS_DIGITS = (
    "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N",
    "P",
    "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z")

time_begin = time.time()

# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, 34])

x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])

# 定义卷积函数
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):

    L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
    L1_relu = tf.nn.relu(L1_conv + b)
    return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')

# 定义全连接层函数
def full_connect(inputs, W, b):
    return tf.nn.relu(tf.matmul(inputs, W) + b)

def last_5_num_test():
    license_num = ""
    saver = tf.train.import_meta_graph("D:\\PyCharm\\Test213\\py_car_num_tensor\\train-saver\\digits\\model.ckpt.meta")
    print("main2")
    with tf.Session() as sess:
        model_file = tf.train.latest_checkpoint("D:\\PyCharm\\Test213\\py_car_num_tensor\\train-saver\\digits")
        print("main3")
        saver.restore(sess, model_file)

        # 第一个卷积层
        W_conv1 = sess.graph.get_tensor_by_name("W_conv1:0")
        b_conv1 = sess.graph.get_tensor_by_name("b_conv1:0")
        conv_strides = [1, 1, 1, 1]
        kernel_size = [1, 2, 2, 1]
        pool_strides = [1, 2, 2, 1]
        L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')

        # 第二个卷积层
        W_conv2 = sess.graph.get_tensor_by_name("W_conv2:0")
        b_conv2 = sess.graph.get_tensor_by_name("b_conv2:0")
        conv_strides = [1, 1, 1, 1]
        kernel_size = [1, 1, 1, 1]
        pool_strides = [1, 1, 1, 1]
        L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')

        # 全连接层
        W_fc1 = sess.graph.get_tensor_by_name("W_fc1:0")
        b_fc1 = sess.graph.get_tensor_by_name("b_fc1:0")
        h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20 * 32])
        h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)

        # dropout
        keep_prob = tf.placeholder(tf.float32)

        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

        # readout层
        W_fc2 = sess.graph.get_tensor_by_name("W_fc2:0")
        b_fc2 = sess.graph.get_tensor_by_name("b_fc2:0")

        # 定义优化器和训练op
        conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

        for n in range(4, 9):
            path = "D:\\PyCharm\\Test213\\py_car_num_tensor\\img_cut\\%s.bmp" % (n)
            img = Image.open(path)
            width = img.size[0]
            height = img.size[1]

            img_data = [[0] * SIZE for i in range(1)]
            for h in range(0, height):
                for w in range(0, width):
                    if img.getpixel((w, h)) < 190:
                        img_data[0][w + h * width] = 1
                    else:
                        img_data[0][w + h * width] = 0

            result = sess.run(conv, feed_dict={x: np.array(img_data), keep_prob: 1.0})

            max1 = 0
            max2 = 0
            max3 = 0
            max1_index = 0
            max2_index = 0
            max3_index = 0
            for j in range(34):
                if result[0][j] > max1:
                    max1 = result[0][j]
                    max1_index = j
                    continue
                if (result[0][j] > max2) and (result[0][j] <= max1):
                    max2 = result[0][j]
                    max2_index = j
                    continue
                if (result[0][j] > max3) and (result[0][j] <= max2):
                    max3 = result[0][j]
                    max3_index = j
                    continue

            license_num = license_num + LETTERS_DIGITS[max1_index]
            print("概率:  [%s %0.2f%%]    [%s %0.2f%%]    [%s %0.2f%%]" % (
                LETTERS_DIGITS[max1_index], max1 * 100, LETTERS_DIGITS[max2_index], max2 * 100,
                LETTERS_DIGITS[max3_index],
                max3 * 100))
        sess.close()
        print("车牌编号是: 【%s】" % license_num)

if __name__ == '__main__':
    find_car_num_brod()   #车牌定位裁剪
    cut_car_num_for_chart() #二值化处理裁剪成单个字符
    province_test()
    #last_5_num_test()  同时加载两个模型还有问题,还望解决过的指明方向

image.gif

资源链接:链接:https://pan.baidu.com/s/1iE__t08BBt5QbhLOUytOlA
提取码:8c21
复制这段内容后打开百度网盘手机App,操作更方便哦

遗留问题:

目前还有很大的问题就是只能一次加载1个预测模型,加载两个的话会说graph问题,我也按照网上说的一个模型一个graph处理但仍旧不行,这里提供下我的两模型加载代码,还望多多指正问题,我的多模型加载:

import tensorflow as tf
import numpy as np

g1 = tf.Graph()
g2 = tf.Graph()

sess2 = tf.Session(graph=g2)

sess = tf.Session(graph=g1)

# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, 1280])
y_ = tf.placeholder(tf.float32, shape=[None, 7])

x_image = tf.reshape(x, [-1, 32, 40, 1])

# 定义卷积函数
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
    print("inputs-----",inputs)
    print("w ---------",W)
    print("b ----------",b)
    print("conv_strides ---------" ,conv_strides)
    print("kernel_size ----------",kernel_size)
    print("pool_strides ----------------",pool_strides)
    print("padding-----------------",padding)

    L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
    L1_relu = tf.nn.relu(L1_conv + b)
    return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')

# 定义全连接层函数
def full_connect(inputs, W, b):
    return tf.nn.relu(tf.matmul(inputs, W) + b)

def load_model():
    print("graph1 ---------------------", g1)
    with sess.as_default():
        with sess.graph.as_default():
            graph = tf.get_default_graph()
            saver1 = tf.train.import_meta_graph(
                "D:\\PyCharm\\Test213\\py_car_num_tensor\\train-saver\\province\\model.ckpt.meta")
            model_file = tf.train.latest_checkpoint("D:\\PyCharm\\Test213\\py_car_num_tensor\\train-saver\\province")
            saver1.restore(sess, model_file)

            print("-------------------------------------------------------------------", graph)
            print('Successfully load the pre-trained model!')
            # 第一个卷积层
            W_conv1 = graph.get_tensor_by_name("W_conv1:0")
            b_conv1 = graph.get_tensor_by_name("b_conv1:0")
            conv_strides = [1, 1, 1, 1]
            kernel_size = [1, 2, 2, 1]
            pool_strides = [1, 2, 2, 1]
            L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')

            # 第二个卷积层
            W_conv2 = graph.get_tensor_by_name("W_conv2:0")
            b_conv2 = graph.get_tensor_by_name("b_conv2:0")
            conv_strides = [1, 1, 1, 1]
            kernel_size = [1, 1, 1, 1]
            pool_strides = [1, 1, 1, 1]
            L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')

            # 全连接层
            W_fc1 = graph.get_tensor_by_name("W_fc1:0")
            b_fc1 = graph.get_tensor_by_name("b_fc1:0")
            h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20 * 32])
            h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)

            # dropout
            keep_prob = tf.placeholder(tf.float32)

            h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

            # readout层
            W_fc2 = graph.get_tensor_by_name("W_fc2:0")
            b_fc2 = graph.get_tensor_by_name("b_fc2:0")

            # 定义优化器和训练op
            conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
            print('Successfully load the pre-trained model!')

            predict(keep_prob, conv)

from PIL import Image

def predict(keep_prob, conv):
    PROVINCES = ("京", "闽", "粤", "苏", "沪", "浙", "豫")
    nProvinceIndex = 0
    for n in range(1, 2):
        path = "D:\\PyCharm\\Test213\\py_car_num_tensor\\img_cut\\%s.bmp" % (n)
        img = Image.open(path)
        width = img.size[0]
        height = img.size[1]

        img_data = [[0] * 1280 for i in range(1)]
        for h in range(0, height):
            for w in range(0, width):
                if img.getpixel((w, h)) < 190:
                    img_data[0][w + h * width] = 1
                else:
                    img_data[0][w + h * width] = 0

        result = sess.run(conv, feed_dict={x: np.array(img_data), keep_prob: 1.0})
        max1 = 0
        max2 = 0
        max3 = 0
        max1_index = 0
        max2_index = 0
        max3_index = 0
        for j in range(7):
            if result[0][j] > max1:
                max1 = result[0][j]
                max1_index = j
                continue
            if (result[0][j] > max2) and (result[0][j] <= max1):
                max2 = result[0][j]
                max2_index = j
                continue
            if (result[0][j] > max3) and (result[0][j] <= max2):
                max3 = result[0][j]
                max3_index = j
                continue

        nProvinceIndex = max1_index
        print("概率:  [%s %0.2f%%]    [%s %0.2f%%]    [%s %0.2f%%]" % (
            PROVINCES[max1_index], max1 * 100, PROVINCES[max2_index], max2 * 100, PROVINCES[max3_index], max3 * 100))

    print("省份简称是: %s" % PROVINCES[nProvinceIndex])

def load_model2():
    with sess2.as_default():
        with sess2.graph.as_default():
            print("sess2 .graph -------->", sess2.graph)
            graph = tf.get_default_graph()
            print("get default graph --------------------------------------",graph)
            saver2 = tf.train.import_meta_graph(
                "D:\\PyCharm\\Test213\\py_car_num_tensor\\train-saver\\letters\\model.ckpt.meta")
            model_file = tf.train.latest_checkpoint("D:\\PyCharm\\Test213\\py_car_num_tensor\\train-saver\\letters")
            saver2.restore(sess2, model_file)

            print('Successfully load the pre-trained model!')
            # 第一个卷积层
            W_conv1 = graph.get_tensor_by_name("W_conv1:0")
            b_conv1 = graph.get_tensor_by_name("b_conv1:0")
            conv_strides = [1, 1, 1, 1]
            kernel_size = [1, 2, 2, 1]
            pool_strides = [1, 2, 2, 1]
            L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')

            # 第二个卷积层
            W_conv2 = graph.get_tensor_by_name("W_conv2:0")
            b_conv2 = graph.get_tensor_by_name("b_conv2:0")
            conv_strides = [1, 1, 1, 1]
            kernel_size = [1, 1, 1, 1]
            pool_strides = [1, 1, 1, 1]
            L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')

            # 全连接层
            W_fc1 = graph.get_tensor_by_name("W_fc1:0")
            b_fc1 = graph.get_tensor_by_name("b_fc1:0")
            h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20 * 32])
            h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)

            # dropout
            keep_prob = tf.placeholder(tf.float32)

            h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

            # readout层
            W_fc2 = graph.get_tensor_by_name("W_fc2:0")
            b_fc2 = graph.get_tensor_by_name("b_fc2:0")

            # 定义优化器和训练op
            conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
            print('Successfully load the pre-trained model!')

            predict2(keep_prob, conv)

def predict2(keep_prob, conv):
    LETTERS_DIGITS = (
        "A", "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X",
        "Y", "Z")
    for n in range(1, 2):
        path = "D:\\PyCharm\\Test213\\py_car_num_tensor\\img_cut\\%s.bmp" % (n)
        img = Image.open(path)
        width = img.size[0]
        height = img.size[1]

        img_data = [[0] * 1280 for i in range(1)]
        for h in range(0, height):
            for w in range(0, width):
                if img.getpixel((w, h)) < 190:
                    img_data[0][w + h * width] = 1
                else:
                    img_data[0][w + h * width] = 0

        result = sess2.run(conv, feed_dict={x: np.array(img_data), keep_prob: 1.0})
        max1 = 0
        max2 = 0
        max3 = 0
        max1_index = 0
        max2_index = 0
        max3_index = 0
        for j in range(7):
            if result[0][j] > max1:
                max1 = result[0][j]
                max1_index = j
                continue
            if (result[0][j] > max2) and (result[0][j] <= max1):
                max2 = result[0][j]
                max2_index = j
                continue
            if (result[0][j] > max3) and (result[0][j] <= max2):
                max3 = result[0][j]
                max3_index = j
                continue

        nProvinceIndex = max1_index
        print("概率:  [%s %0.2f%%]    [%s %0.2f%%]    [%s %0.2f%%]" % (
            LETTERS_DIGITS[max1_index], max1 * 100, LETTERS_DIGITS[max2_index], max2 * 100, LETTERS_DIGITS[max3_index],
            max3 * 100))

    print("省份简称是: %s" % LETTERS_DIGITS[nProvinceIndex])

if __name__ == '__main__':
    load_model()

    print("load module 2)

    load_model2()

image.gif

错误类型:ValueError: Tensor("W_conv1:0", shape=(8, 8, 1, 16), dtype=float32_ref) must be from the same graph as Tensor("Reshape:0", shape=(?, 32, 40, 1), dtype=float32).

你可能感兴趣的:(关于python 对车牌检测识别切割+TensorFlow预测)