第二章 技术

编译期Assertions

//动态检测
#include 

template
TypeOut safe_reinterpret_cast(TypeIn tIn)
{
    assert(sizeof(TypeIn) <= sizeof(TypeOut));
    return reinterpret_cast(tIn);
}

int main()
{
    void* pValue = nullptr;
    char nValue0 = reinterpret_cast(pValue);          //正常运行
    char nValue1 = safe_reinterpret_cast(pValue);     //引发中断
    return 0;
}
//静态检测,但是编译器报的错并不直接

//结合常量表达式和编译器自动检查分配0数组错误
#define STATIC_CHECK(expr) { char aTem[expr ? 1 : 0]; }

template
TypeOut safe_reinterpret_cast(TypeIn tIn)
{
    STATIC_CHECK(sizeof(TypeIn) <= sizeof(TypeOut));
    return reinterpret_cast(tIn);
}

int main()
{
    void* pValue = nullptr;
    char nValue0 = reinterpret_cast(pValue);               //编译通过

    //char nValue1 = safe_reinterpret_cast(pValue);        //编译失败
    //error C2466: 不能分配常量大小为 0 的数组

    long long nValue2 = safe_reinterpret_cast(pValue);//编译成功
    return 0;
}
//最终版:检测任意常量表达式,且能自定义编译器报错的字符串

template class CCompileTimeCheck
{
public:
    CCompileTimeCheck(...);
};
template<> class CCompileTimeCheck {};


#define STATIC_CHECK(expr, msg)                     \
{                                                   \
    class C##msg {};                                \
    sizeof((CCompileTimeCheck (C##msg())));   \
}


template
TypeOut safe_reinterpret_cast(TypeIn tIn)
{
    STATIC_CHECK(sizeof(TypeOut) >= sizeof(TypeIn), Szn);

    return reinterpret_cast(tIn);
}


int main()
{
    void* pValue = nullptr;
    long long nValue0 = safe_reinterpret_cast(pValue);//正常编译

    char nValue1 = safe_reinterpret_cast(pValue);          //编译出错
/*  
    error C2440: “”: 
    无法从“safe_reinterpret_cast::CSzn”转换为“CCompileTimeCheck”
*/
    return 0;
}


对象构造、函数声明、名称查找的规则组合体现的一个例子

#include 
#include 


class CTest
{
public:
    CTest()             { printf("CTest\n"); }
    CTest(CTest&)       { printf("CTest Copy\n"); }
};

class CTest1
{
public:
    CTest1()            { printf("CTest1\n"); }
    CTest1(CTest&)      { printf("CTest1 Create\n"); }
    CTest1(CTest1&)     { printf("CTest1 Copy\n"); }
};


int main()
{
    {
        int nV0 = double(2.2);          //强制类型转换 nV0 = 2
        //反汇编: 008F3E2C  mov         dword ptr [nV0],2 

        int nV1 = (double)2.2;          //强制类型转换 nV1 = 2
        //反汇编: 008F3E33  mov         dword ptr [nV1],2  

        auto nV2 = int(double());       //强制类型转换 nV2 = 0
        //反汇编: 008F3E3A  mov         dword ptr [nV2],0  

        auto nV3 = static_cast(double());
        //反汇编: 01003E25  mov         dword ptr [nV3],0  

        auto pStr = typeid(int(double())).name();
        //pStr = "int __cdecl(double (__cdecl*)(void))"

        pStr = typeid((int(double()))).name();
        //pStr = "int"

        pStr = typeid(double()).name();
        //pStr = "double __cdecl(void)"

        pStr = typeid((double())).name();
        //pStr = "double"


        //int (double);                 //编译失败
        int Fun(double);                //函数声明
        pStr = typeid(Fun).name();      //pStr = "int __cdecl(double)"

        //sizeof 需要一个表达式或类型
        //sizeof(Fun);  //error Cun2070: “int (double)”: 非法的 sizeof 操作数
        int nV4 = sizeof(Fun(1.1));     //Fun即使不进行定义,也不会报错 nV4 = 4
        //反汇编: 009C3ECD  mov         dword ptr [nV4],4  
    }

    {
        auto Test1 = CTest1(CTest());       //输出"CTest" "CTest1 Create"
        (CTest1(CTest()));                  //输出"CTest" "CTest1 Create"

        CTest1 CTest();                     //函数声明 
        CTest1 (CTest());                   //函数声明 等价上一句
        //从此 名字 CTest就不是自定义的类了,而是一个函数名称

        auto it = CTest1(CTest());  //输出"Suprise" "CTest1" "CTest1 Copy"
        auto it1 = CTest();         //输出"Suprise" "CTest1"

        printf("");
    }

    return 0;
}


CTest1(CTest())     //等价于 CTest1 CTest() 此段代码是是CTest函数的定义
{
    printf("Suprise\n");

    return CTest1();
}


模板偏特化

  • 模板类可以全特化也可以偏特化
  • 模板类的成员函数只能全特化,不能偏特化(参见第一章)
  • namespace-level的函数不能偏特化,但是可以被轻易的重载

常数映射为类型

  • 应用场景:
    有必要根据某个编译期常数调用一个或数个不同的函数
    编译期实施分派(if-else switch语句)
template
struct IntToType
{
    enum { eValue = nValue };
};


template
class CTest
{
public:
    void Fun()
    {
        //编译期分派
        if (bTest)
        {
            tValue.SomeFun();
        }
    }

private:
    T tValue;
};

template
class CTest1
{
private:
    void Fun(IntToType)
    {
        tValue.SomeFun();
    }

    void Fun(IntToType){}

public:
    //编译期分派
    void Suprise()
    {
        Fun(IntToType());
    }

private:
    T tValue;
};


int main()
{
    int nValue = 10;
    auto it0 = IntToType<10>();         //编译成功
    //auto it1 = IntToType();   //编译出错
    //“IntToType”: 模板参数“nValue”:“nValue”: 局部变量不能用作非类型参数

    CTest Test;
    //Test.Fun();               //编译出错

    CTest1 Test1;
    Test1.Suprise();            //编译成功
    return 0;
}


类型对类型的映射

//类型映射到类型
template
struct STypeToType{ typedef T TypeOriginal; };

template
T* Create(const U& u, STypeToType)
{
    return new T(u);
}

template
CTest* Create(const U& u, STypeToType)
{
    //根据类型定制的版本
    return new CTest(u, -1);
}


型别选择

  • 一个应用场景:比如根据不同的类型,在vector中选择放置对象本身还是对象的指针
#include 
#include 


using std::vector;


//方法一:扩展性差
template
struct STest
{
    typedef T* Type;
};

template
struct STest
{
    typedef T Type;
};


//方法二:扩展性好
template
struct SSelect
{
    typedef T Type;
};

template
struct SSelect
{
    typedef U Type;
};


int main()
{
    //it0 = "int *"
    auto it0 = typeid(STest::Type).name();

    //it1 =  "int"
    auto it1 = typeid(STest::Type).name();

    //it2 = "int"
    auto it2 = typeid(SSelect::Type).name();

    //it3 = "double"
    auto it3 = typeid(SSelect::Type).name();    
    
    return 0;
}


编译期间侦查可转换性和继承性

  • 面对两个陌生的类型T和U,如何得知U是否继承于T?在编译期间发掘这样的关系,意味着不必使用dynamic_cast,后者会所耗执行效率。
template
class CConversion
{
    //此类可以用于编译期间侦测类型的可转换性

    typedef char Small;
    class CBig { char aBuff[2]; };
    //定义class CBig { char aBuff[2]; }; 确保sizeof(CBig) != sizeof(Small)

    static Small Fun(U);
    static CBig Fun(...);
/*
    若T能转换为U则调用Fun(U), 否则调用Fun(...)
    则有如下结论:
    若T能转换为U : Fun返回Small
    若T不能转换为U : Fun返回CBig
*/

    static T MakeT();
    //定义一个不完全函数,即使T类型的构造函数是private类型的也无妨

public:
    enum 
    {
        eExists = sizeof(Fun(MakeT())) == sizeof(Small)
        //若T能转换为U则      Exists = true
        //若T不能转换为U则 Exists = false

/*
        sizeof可以用在任何表达式上,不论后者有多复杂,sizeof会直接传回大小,
        不需要等到执行期才评估。这意味着sizeof可以感知重载、模板具现、转换规则
        ,或任何可以发生在C++表达式上的机制
*/
    };

    enum
    {
        eExistsToWay = eExists && CConversion::eExists
    };

    enum
    {
        eSameType = false
    };
};


//模板偏特化
template
class CConversion
{
public:
    enum { eExists = true, eExistsToWay = true, eSameType = true };
};


class CFather {};
class CChild : public CFather {};


int main()
{
    bool aRe0[] = 
    {
        CConversion::eExists,      //true
        CConversion::eExists,       //false
        CConversion::eExists,//true
        CConversion::eExists,//false
    };

    bool aRe1[] = 
    {
        //true
        CConversion::eExistsToWay,

        //false
        CConversion::eExistsToWay,

    };

    bool aRe2[] =
    {
        CConversion::eSameType,       //true
        CConversion::eSameType,    //false
    };

    return 0;
}


Type Traits

//类型判断

#include 
using std::vector;


template
class CTypeTraits
{
public:
    enum
    {
        eNormal,
        eNference,
        eNormalPoint,
        ePointToMember,
    };

private:
    template struct STypeTest
    {
        enum { eResult = eNormal };
    };

    template struct STypeTest
    {
        enum { eResult = eNference };
    };

    template struct STypeTest
    {
        enum { eResult = eNormalPoint };
    };

    template struct STypeTest
    {
        enum { eResult = eNormalPoint };
    };

    template
    struct STypeTest
    {
        enum { eResult = ePointToMember };
    };

    template
    struct STypeTest
    {
        //类的常量 成员/成员函数 指针
        enum { eResult = ePointToMember };
    };

public:
    enum { eType = STypeTest::eResult };
};


struct A
{
    int value;
    int Fun();
};


int main()
{
    //语法 : 定义一个指向类的常量成员函数的指针
    vector::size_type (vector::*p)() const = &vector::size;

    char aRe[] = 
    {
        CTypeTraits::iterator>::eType, //0
        CTypeTraits::eType,                   //0
        CTypeTraits::eType,                  //1
        CTypeTraits::eType,            //2
        CTypeTraits::eType,                  //2
        CTypeTraits::eType,    //3
        CTypeTraits::eType,      //3
        CTypeTraits::size)>::eType,       //3
    };

    return 0;
}
//利用偏特化 去掉 const 属性
template
class CDelConst
{
private:
    template struct SNotConst
    {
        typedef U Type;
    };

    template struct SNotConst
    {
        typedef U Type;
    };

public:
    typedef typename SNotConst::Type Type;
};

你可能感兴趣的:(第二章 技术)