CycleGAN 配置及其实现

pytorch-CycleGAN-and-pix2pix

目录
  • pytorch-CycleGAN-and-pix2pix
    • 环境要求
    • 安装
    • Train
      • 用已有数据集训练
    • Test
      • 预训练模型
    • 训练与测试自己的数据集
    • 遇到的问题
    • Reference

环境要求

  • Linux(ubuntu 16.04)

  • python3.5

  • Nvidia GPU 1080

  • Cuda8.0

  • Cudnn6.0

  • pytorch搭建比较简单,看这个博客

安装

  • Install PyTorch 0.4, torchvision, and other dependencies from http://pytorch.org
  • 安装 visdom and dominate.
pip install visdom dominate
  • 以下命令安装所有的依赖
pip install -r requirements.txt
  • 下载库
git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
cd pytorch-CycleGAN-and-pix2pix
  • conda可以用以下命令进行安装环境依赖
./scripts/conda_deps.sh

Train

用已有数据集训练

  • 用下载脚本进行下载maps数据集:
bash ./datasets/download_cyclegan_dataset.sh maps
  • Train a model:
#!./scripts/train_cyclegan.sh
python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan
  • 查看训练结果以及loss

运行python -m visdom.server并单击URL http:// localhost:8097(端口号可以通过-p来指定)。要查看更多中间结果,请查看./checkpoints/maps_cyclegan/web/index.html

Test

  • 测试模型:
#!./scripts/test_cyclegan.sh 
python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan

测试结果将保存到html文件中:./results/maps_cyclegan/latest_test/index.html

预训练模型

  • --model test仅用于为一侧生成CycleGAN的结果。python test.py --model cycle_gan将需要在两个方向上加载和生成结果,这有时是不必要的。结果将保存在./results/。使用--results_dir {directory_path_to_save_result}指定的结果目录。

  • 如果您想将预先训练的模型应用于输入图像集合(而不是图像对),请使用--dataset_mode single--model test选项。这是一个将模型应用于Facade标签贴图(存储在目录中facades/testB)的脚本。

    #!./scripts/test_single.sh
    python test.py --dataroot ./datasets/facades/testB/ --name {your_trained_model_name} --model test
    

训练与测试自己的数据集

训练自己的数据集需要在数据集文件夹下创建两个文件夹trainAtrainB,这两个文件夹包含的图片是来自于A和B两个域。

你可以在你的训练设定设定测试模型--phase traintest.py。您还可以创建子目录testAtestB,如果你有测试数据。

  • 打开visdom服务器
source activate pytorch
pip install visdom dominate
python -m visdom.server 
# 如果端口冲突,则用-p进行端口的指定
  • 训练
source activate pytorch 
python train.py --dataroot ./datasets/cow2 --name cow2_cyclegan --model cycle_gan

遇到的问题

来自:@luyue
出现的问题:
①导入torch出错
是anaconda的问题,解决办法
cp /usr/lib/x86_64-linux-qnu/libgomp.so.1 /home/learner/anaconda3/lib/libgomp.so.1

cp /usr/lib/x86_64-linux-qnu/libstdc++.so.6 /home/learner/anaconda3/lib/libstdc++.so.6

②可视化界面 python -m visdom.server出错(安装使用visdom)
其实还可以用 python -m visdom.server -p 8097
最开始打不开,是由于google没有连接上网
连接网络后打开空白,然后打开另外一个命令行运行自己的py文件
然后返回浏览器可以看到可视化界面

Reference

Github地址

参考博客

数据集制作参考

你可能感兴趣的:(CycleGAN 配置及其实现)