广搜变形

胜败兵家事不期,包羞忍耻是男儿。
江东子弟多才俊,卷土重来未可知。——杜牧

基本的广搜适用于无权图求最短路,若为带权图,那么普通广搜就不能使用了。

于是,我们有以下几种做法:其中,优先队列bfs最常见,可以和估价函数提高效率。

一、双端队列广搜

如果遍历的图的边权为1或0,可以使用双端队列广搜;

具体地,如果该图边权全为1,那么就是普通广度优先;

但如果有权是0的边怎么办?我们认为,在一个边权只为0的联通块中,我们把它缩成一个单独的节点(缩点),因为既然为0,那么这个联通块中任意一个点到其它点的代价为0,不如把它看作一个点,为了方便叙述,称这样的点为”0权“节点;

对于缩点后的情况,我们不难想到,这张图转化成一张无权图。我们只需要对于这张图进行BFS。

可是,缩点不免有些困难,实现起来比较复杂;

那么,可以把普通队列改造成双端队列,其中一个端口起到了缩点找联通块的作用。

我们考虑,当该状态扩展了一条边权为一的边时,将其按照标准操作进行;
反之,我们把新状态压入队列的首项,每次扩展队列的首项状态。

为什么是对的?
我们把边权为0的一条边所指向的结点放入队首,对于整个”0权“节点相当于没有扩展,只是在遍历整个联通块;而对于边权为一的边所指向的状态,放入队列尾,则就是对于该”0权“节点的一次扩展变换。

例题:电路维修

网址:http://noi-test.zzstep.com/contest/0x20「搜索」例题/2601 电路维修

描述

Ha'nyu是来自异世界的魔女,她在漫无目的地四处漂流的时候,遇到了善良的少女Rika,从而被收留在地球上。Rika的家里有一辆飞行车。有一天飞行车的电路板突然出现了故障,导致无法启动。

电路板的整体结构是一个R行C列的网格(R,C≤500),如右图所示。

广搜变形_第1张图片

每个格点都是电线的接点,每个格子都包含一个电子元件。电子元件的主要部分是一个可旋转的、连接一条对角线上的两个接点的短电缆。在旋转之后,它就可以连接另一条对角线的两个接点。电路板左上角的接点接入直流电源,右下角的接点接入飞行车的发动装置。

Ha'nyu发现因为某些元件的方向不小心发生了改变,电路板可能处于断路的状态。她准备通过计算,旋转最少数量的元件,使电源与发动装置通过若干条短缆相连。不过,电路的规模实在是太大了,Ha'nyu并不擅长编程,希望你能够帮她解决这个问题。

输入格式

输入文件包含多组测试数据。第一行包含一个整数T 表示测试数据的数目。
对于每组测试数据,第一行包含正整数R 和C,表示电路板的行数和列数。
之后R 行,每行C 个字符,字符是"/"和""中的一个,表示标准件的方向。

输出格式

对于每组测试数据,在单独的一行输出一个正整数,表示所需的缩小旋转次数。
如果无论怎样都不能使得电源和发动机之间连通,输出NO SOLUTION。

样例输入
1
3 5
\\/\\
\\///
/\\\\
样例输出
1
数据范围

对于100% 的数据,R,C≤500,T≤5。

样例解释

样例的输入对应于题目描述中的情况。
只需要按照下面的方式旋转标准件,就可以使得电源和发动机之间连通。

广搜变形_第2张图片

这道题非常玄乎,但不过由于学习双端队列广搜后,不难发现,对于图中的横纵十字交点,可以当做一个节点,起点和终点给定,连边,如果不连这边权为1;否则,边权为0。该图即为我们讨论过的0-1权图。

代码如下:

#include
#include
#include
#include
#include
#define pii pair 
#define  y second
#define x first 
using namespace std;

const int MAX_size = 500 + 5;
struct edge
{
	pii to;
	int next, w;
} e[MAX_size * MAX_size * 4];
bool book[MAX_size][MAX_size];
int R, C, tot = 0, head[MAX_size][MAX_size] = {};
int d[MAX_size][MAX_size] = {};
deque  Q;
char g[MAX_size];
void add_edge(pii x, pii y, int z) {
	e[++ tot].to = y;
	e[tot].w = z;
	e[tot].next = head[x.x][x.y];
	head[x.x][x.y] = tot;
	return;
}
void init() {
	tot = 0;
	memset(book, false, sizeof(book));
	memset(head, 0, sizeof(head));
	memset(d, 0x3f, sizeof(d));
	return;
}
int bfs() {	
	Q.clear();
	Q.push_back(make_pair(0, 0));
	d[0][0] = 0;
	while(!Q.empty()) 
	{
		pii now = Q.front();
		Q.pop_front();
		if(book[now.x][now.y]) continue;
		book[now.x][now.y] = true;
		if(now == make_pair(R, C)) return d[now.x][now.y];
		for(int i = head[now.x][now.y]; i; i = e[i].next) 
		{
			pii v = e[i].to;
			d[v.x][v.y] = min(d[v.x][v.y], d[now.x][now.y] + e[i].w);
			if(!e[i].w) Q.push_front(v);
			else Q.push_back(v);
		}
	}
	if(d[R][C] < 0x3f) return d[R][C];
	return -1;
}
int main()
{
	int T;
	scanf("%d", &T);
	while(T --)
	{
		scanf("%d %d", &R, &C);
		init();
		for(int i = 1; i <= R; ++ i) {
			scanf("%s", g + 1);
			for(int j = 1; j <= C; ++ j) {//连边,将矩形转化为图,将十字交点转化为图中结点。
				pii x1 = make_pair(i - 1, j - 1), y1 = make_pair(i, j); 
				pii x2 = make_pair(i, j - 1), y2 = make_pair(i - 1, j);
				if(g[j] == '\\') {
					add_edge(x1, y1, 0);
					add_edge(y1, x1, 0);
					add_edge(x2, y2, 1); 
					add_edge(y2, x2, 1);
				}
				if(g[j] == '/') {
					add_edge(x2, y2, 0);
					add_edge(y2, x2, 0);
					add_edge(x1, y1, 1);
					add_edge(y1, x1, 1);
				}
 			}
		}
		int ans = bfs();
		if(ans != -1) printf("%d\n", ans);
		else puts("NO SOLUTION");//注意细节!
	}
	return 0;
}

二、优先队列bfs

如果图中更一般地情况是:边权不止为1或0,那么,将普通队列改成优先队列可以很高效地求解。

如果仍为标准队列,那么,该队列不再满足单调性,只有通过不断更新直到无法更新后(松弛),才停止。经典算法是Bellman-Ford (SPFA) 最短路算法。

采用优先队列BFS要优于上述。对应经典算法为Dijkstra的最短路算法。

例题:装满的油箱

网址:http://poj.org/problem?id=3635

有N个城市(编号0、1…N-1)和M条道路,构成一张无向图。
在每个城市里边都有一个加油站,不同的加油站的单位油价不一样。

现在你需要回答不超过100个问题,在每个问题中,请计算出一架油箱容量为C的车子,从起点城市S开到终点城市E至少要花多少油钱?
注意: 假定车子初始时油箱是空的。

输入格式

第一行包含两个整数N和M。
第二行包含N个整数,代表N个城市的单位油价,第i个数即为第i个城市的油价pi。
接下来M行,每行包括三个整数u,v,d,表示城市u与城市v之间存在道路,且车子从u到v需要消耗的油量为d。
接下来一行包含一个整数q,代表问题数量。
接下来q行,每行包含三个整数C、S、E,分别表示车子油箱容量、起点城市S、终点城市E。

输出格式

对于每个问题,输出一个整数,表示所需的最少油钱。
如果无法从起点城市开到终点城市,则输出”impossible”。
每个结果占一行。

数据范围

1≤N≤1000,1≤M≤10000;
1≤pi≤100,1≤d≤100,1≤C≤100;

输入样例:
5 5
10 10 20 12 13
0 1 9
0 2 8
1 2 1
1 3 11
2 3 7
2
10 0 3
20 1 4
输出样例:
170
impossible

如果没有油箱的设置,那么这道题就是直接的最短路问题。

如果有油箱,那么,考虑状态(now,fuel)代表在第now个城市油箱剩余fuel
如果该边可以通过,就更新入队列;否则,就将(now,fuel + 1)入队,并更新相应的代价。
代码如下:

#include
#include
#include
#include
#include
#define maxn 20000 + 5
#define maxm 100 + 10
using namespace std;

struct node 
{
	int cost, city, fuel;
	node(int x, int y, int z): cost(x), city(y), fuel(z)
	{}
	bool operator < (const node& rhs) const 
	{
		return cost > rhs.cost;
	}
};

struct edge
{
	int to, next, w;
} e[maxn];

bool vis[maxn][maxm];
int n, m, tot = 0, head[maxn], p[maxn] = {}, d[maxn][maxm] = {};
void add_edge(int x, int y, int z)
{
	e[++ tot].to = y;
	e[tot].w = z;
	e[tot].next = head[x];
	head[x] = tot;
	return;
}

int bfs(int C, int S, int E)
{
	priority_queue  Q;
	while(!Q.empty()) Q.pop();
	memset(vis, false, sizeof(vis));
	memset(d, 0x3f, sizeof(d));
	d[S][0] = 0;
	Q.push(node(0, S, 0));

	while(!Q.empty())
	{
		node now = Q.top();
		int u = now.city, f = now.fuel;
		Q.pop();
		if(vis[u][f]) continue;
		if(u == E) return d[u][f];
		vis[u][f] = true;
		if(f < C)
		{
			if(d[u][f + 1] > d[u][f] + p[u])
			{
				d[u][f + 1] = d[u][f] + p[u];
				Q.push(node(d[u][f + 1], u, f + 1));
			}
		}
		for(int i = head[u]; i; i = e[i].next)
		{
			int v = e[i].to, w = e[i].w;
			if(w > f) continue;
			if(d[v][f - w] > d[u][f])
			{
				d[v][f - w] = d[u][f];
				Q.push(node(d[v][f - w], v, f - w));
			}
		}
	}
	return -1;
}
int main()
{
	int q;
	scanf("%d %d", &n, &m);
	for(int i = 0; i < n; ++ i) scanf("%d", &p[i]);
	int x, y, z;
	for(int i = 0; i < m; ++ i)
	{
		scanf("%d %d %d", &x, &y, &z);
		add_edge(x, y, z);
		add_edge(y, x, z);
	}
	scanf("%d", &q);
	int C, S, E;
	int ans;
	for(int t = 1; t <= q; ++ t)
	{
		ans = 0;
		scanf("%d %d %d", &C, &S, &E);
		ans = bfs(C, S, E);
		if(ans != -1) printf("%d\n", ans);
		else
		{
			puts("impossible");
		}
	}
	return 0;
}

要注意细节!!

三、双向广搜

  • 对于一颗搜索树,规模巨大,换句话来讲,分支很多,并且层数很深,那么,我们可以采取双向BFS。

  • 若该题状态空间允许使用广搜(bfs),那么双向广搜表现将非常优秀:

  • 不妨设搜索树有k层,每层每个分支均可以扩展n个,那么,使用普通的广度搜索时间复杂度将高达O(nk),而双向广搜则为O(2*n(k/2))。

  • 双向广搜的本质其实是从目标状态和初状态每轮各自扩展,从而减小搜索深度和搜索树规模。

  • 原理与双向搜索相差不大。

  • 与“中途相遇法”异曲同工之妙。

例题:噩梦

HDOJ3085
网址:http://acm.hdu.edu.cn/showproblem.php?pid=3085

给定一张N*M的地图,地图中有1个男孩,1个女孩和2个鬼。
字符“.”表示道路,字符“X”表示墙,字符“M”表示男孩的位置,字符“G”表示女孩的位置,字符“Z”表示鬼的位置。

男孩每秒可以移动3个单位距离,女孩每秒可以移动1个单位距离,男孩和女孩只能朝上下左右四个方向移动。

每个鬼占据的区域每秒可以向四周扩张2个单位距离,并且无视墙的阻挡,也就是在第k秒后所有与鬼的曼哈顿距离不超过2k的位置都会被鬼占领。

注意: 每一秒鬼会先扩展,扩展完毕后男孩和女孩才可以移动。
求在不进入鬼的占领区的前提下,男孩和女孩能否会合,若能会合,求出最短会合时间。

输入格式

第一行包含整数T,表示共有T组测试用例。
每组测试用例第一行包含两个整数N和M,表示地图的尺寸。
接下来N行每行M个字符,用来描绘整张地图的状况。(注意:地图中一定有且仅有1个男孩,1个女孩和2个鬼)

输出格式

每个测试用例输出一个整数S,表示最短会合时间。
如果无法会合则输出-1。
每个结果占一行。

数据范围

1

输入样例:
3
5 6
XXXXXX
XZ..ZX
XXXXXX
M.G...
......
5 6
XXXXXX
XZZ..X
XXXXXX
M.....
..G...
10 10
..........
..X.......
..M.X...X.
X.........
.X..X.X.X.
.........X
..XX....X.
X....G...X
...ZX.X...
...Z..X..X
输出样例:
1
1
-1

状态为两个人的各自位置;若将其打包变为一个状态,则共有四个维度,每次需要遍历16 * 16个状态,超时;

考虑:

建立两个队列,每一轮轮流扩展,对于每个位置分别记录可达性;

若出现扩展到的符合题意位置,与此同时对方可以到达的位置,则说明对方一定能够在这里会和;

而队列仍具有单调性,所以直接将该轮数作为答案。
代码如下:

#include
#include
#include
#include
#include
#include
#define x first
#define y second
#define pii pair 

using namespace std;
const int MAX_size = 804;
const int dx[4] = {-1, 1, 0, 0}, dy[4] = {0, 0, -1, 1};

pii boy, girl;
pii g[2];
char ch[MAX_size][MAX_size];

int n, m;
bitset  v1[MAX_size], v2[MAX_size];
bool valid(int x, int y, int k)//判断
{
	if(x < 1 || x > n || y < 1 || y > m || ch[x][y] == 'X') return false;
	for(int i = 0; i < 2; ++ i)
		if(abs(g[i].x - x) + abs(g[i].y - y) <= k * 2) return false;

	return true;
}

int bfs()
{
	queue  q1, q2;
	while(!q1.empty()) q1.pop();
	while(!q2.empty()) q2.pop();
	for(int i = 0; i <= n; ++ i)
	{
		v1[i].reset();
		v2[i].reset();
	}
	v1[boy.x][boy.y] = true;
	v2[girl.x][girl.y] = true;
	int cnt1, cnt2, time = 0;
	q1.push(boy);
	q2.push(girl);
	pii now;

	while(!q1.empty() && !q2.empty())
	{
		++ time;
		cnt2 = q2.size();
		for(int i = 0; i < 3; ++ i)
		{
			cnt1 = q1.size();
			for(int t = 0; t < cnt1; ++ t)
			{
				now = q1.front();
				q1.pop();
				if(!valid(now.x, now.y, time)) continue;//鬼先扩展要注意
				pii next;
				for(int k = 0; k < 4; ++ k)
				{
					next = make_pair(now.x + dx[k], now.y + dy[k]);
					if(!valid(next.x, next.y, time)) continue;
					if(v2[next.x][next.y]) return time;
					if(!v1[next.x][next.y])
					{
						q1.push(next);
						v1[next.x][next.y] = true;
					}
				}
			}
		}

		for(int i = 0; i < cnt2; ++ i)
		{
			now = q2.front();
			q2.pop();
			if(!valid(now.x, now.y, time)) continue;
			pii next;
			
			for(int k = 0; k < 4; ++ k)
			{
				next = make_pair(now.x + dx[k], now.y + dy[k]);
				if(!valid(next.x, next.y, time)) continue;
				if(v1[next.x][next.y]) return time;
				if(!v2[next.x][next.y])
				{
					q2.push(next);
					v2[next.x][next.y] = true;
				}
			}
		}
	}
	return -1;
}
int main()
{
	int T, cnt = 0;
	scanf("%d", &T);
	while(T --)
	{
		scanf("%d %d", &n, &m);
		for(int i = 1; i <= n; ++ i)
		{
			scanf("%s", ch[i] + 1);
			for(int j = 1; j <= m; ++ j)
                   {//记录两人及俩鬼的位置
				if(ch[i][j] == 'M') boy	= make_pair(i, j);
				else if(ch[i][j] == 'G') girl = make_pair(i, j);
				else if(ch[i][j] == 'Z') g[cnt ++] = make_pair(i, j);
			}
		}
		printf("%d\n", bfs());
		cnt = 0;
	}
	return 0;
}
练习:字串变换 NOIP2002

网址:https://www.luogu.com.cn/problem/P1032

题目描述

已知有两个字串A,B及一组字串变换的规则(至多6个规则):

A1​ ->B1​
A2​ -> B2​

规则的含义为:
在 A中的子串 A1​ 可以变换为B1​,A2​ 可以变换为 B2​ …。

例如:A=abcd,B=xyz,
变换规则为:
abc→xu,ud→y,y→yz
则此时,A可以经过一系列的变换变为B,其变换的过程为:
abcd→xud→xy→xyz。
共进行了3次变换,使得A变换为B。

输入格式
输入格式如下:
A B
A1​ B1​
A2​ B2​ |-> 变换规则
... ... 

所有字符串长度的上限为20。
输出格式
输出至屏幕。格式如下:
若在10步(包含10步)以内能将A变换为B,则输出最少的变换步数;
否则输出"NO ANSWER!"

输入输出样例
输入
abcd xyz
abc xu
ud y
y yz
输出
3

补充说明:对于 string str,str.replace(i,length,s)指的是将字符串str从i开始length个字符全部有序替换为字符串s;

此题最开始如果使用搜索,会发现状态是一个字符串,每次一该字符串扩展,这是一个较难处理的状态,STL 中的 map 可以很好地处理这样的状态。

但是,这样会超时;此时,我们可以双向bfs,大幅度地提升效率;
代码如下:

#include
#include
#include
#include
#include
#include
#include
using namespace std;
map  d1, d2;
map  v1, v2;

string s, t;
string x[7], y[7];
int cnt = 0;
bool check(string str1, string str2, int p)
{
	for(int i = 0; i < str2.size(); ++ i) 
         if(str1[i + p] != str2[i]) return false;
	return true;
}
int bfs()
{
	queue  q1, q2;
	if(s == t) return 0;
	while(!q1.empty()) q1.pop();
	while(!q2.empty()) q2.pop();
	d1.clear(), v1.clear();
	d2.clear(), v2.clear();
	int pos, i, time;
	string p, now, next;
	d1[s] = 0, v1[s] = true;
	d2[t] = 0, v2[t] = true;
	q1.push(s);
	q2.push(t);
	while(!q1.empty() && !q2.empty())
	{
		time = q1.size();
		while(time --)
		{
			now = q1.front();
			q1.pop();
			if(d1[now] > 9) return -1;
			p = now;
			for(i = 0; i < cnt; ++ i)
			{
				for(pos = 0; pos < now.size(); ++ pos)
				{
					if(check(now, x[i], pos))
					{
						p.replace(pos, x[i].size(), y[i]);
						if(!v1[p])
						{
							d1[p] = d1[now] + 1;	
							if(v2[p]) return d1[p] + d2[p] > 10 ? -1 : d1[p] + d2[p];
							v1[p] = true;
							q1.push(p);
						}
					}
					p = now;
				}
			}
		}
		time = q2.size();
		while(time --)
		{
			now = q2.front();
			q2.pop();
			if(d2[now] > 9) return -1;
			p = now;
			for(i = 0; i < cnt; ++ i)
			{
				for(pos = 0; pos < now.size(); ++ pos)
				{
					if(check(now, y[i], pos))
					{
						p.replace(pos, y[i].size(), x[i]);
						if(!v2[p])
						{
							d2[p] = d2[now] + 1;
							if(v1[p]) return d1[p] + d2[p] > 10 ? -1 : d1[p] + d2[p];
							v2[p] = true;
							q2.push(p);
						}
					}
					p = now;
				}
			}
		}
	}
	return -1;
}
int main()
{
	int ans;
	cin >> s >> t;
	while(cin >> x[cnt] >> y[cnt]) ++ cnt;
	ans = bfs();
	if(ans == -1) puts("NO ANSWER!");
	else printf("%d\n", ans);
	return 0;
}

你可能感兴趣的:(广搜变形)