All questions are simple level.
Construct String from Binary Tree
Question[606]:You need to construct a string consists of parenthesis and integers from a binary tree with the preorder traversing way. The null node needs to be represented by empty parenthesis pair "()". And you need to omit all the empty parenthesis pairs that don't affect the one-to-one mapping relationship between the string and the original binary tree.
Example
Input: Binary tree: [1,2,3,4]
1
/ \
2 3
/
4
Output: "1(2(4))(3)"
Explanation: Originallay it needs to be "1(2(4)())(3()())", but you need to omit all the unnecessary empty parenthesis pairs. And it will be "1(2(4))(3)".
Solution
Use pre-order traversal. These two methods is the same. The first one is implemented by passing arguments by reference. The second one is implemented by returned value.
class Solution
{
public:
string tree2str(TreeNode *t)
{
// string s = "";
// preorder(t, s);
// return s;
return preorder2(t);
}
void preorder(TreeNode *p, string &s)
{
if (p == nullptr)
return;
string sval = to_string(p->val);
string l, r;
preorder(p->left, l);
preorder(p->right, r);
s += sval;
bool lflag = (l != "");
bool rflag = (r != "");
if (lflag && rflag)
s += "(" + l + ")(" + r + ")";
if (!lflag && rflag)
s += "()(" + r + ")";
if (lflag && !rflag)
s += "(" + l + ")";
}
string preorder2(TreeNode *p)
{
if (p == nullptr)
return "";
bool l = (p->left != nullptr);
bool r = (p->right != nullptr);
string sval = to_string(p->val);
if (l && r)
return sval + "(" + preorder2(p->left) + ")(" + preorder2(p->right) + ")";
if (!l && r)
return sval + "()(" + preorder2(p->right) + ")";
if (l && !r)
return sval + "(" + preorder2(p->left) + ")";
return sval;
}
};
Merge Two Binary Trees
Question[617]: Given two binary trees and imagine that when you put one of them to cover the other, some nodes of the two trees are overlapped while the others are not. You need to merge them into a new binary tree. The merge rule is that if two nodes overlap, then sum node values up as the new value of the merged node. Otherwise, the NOT null node will be used as the node of new tree.
Solution: Two versions, including recursion and iteration.
-
Recursion version-1: create a completely new tree
class Solution { public: TreeNode *mergeTrees(TreeNode *t1, TreeNode *t2) { TreeNode *root = nullptr; innerMerge(root, t1, t2); return root; } void innerMerge(TreeNode *&p, TreeNode *t1, TreeNode *t2) { bool flag1 = (t1 != nullptr); bool flag2 = (t2 != nullptr); if (flag1 && flag2) p = new TreeNode(t1->val + t2->val); else if (!flag1 && flag2) p = new TreeNode(t2->val); else if (flag1 && !flag2) p = new TreeNode(t1->val); else return; innerMerge(p->left, flag1 ? t1->left : nullptr, flag2 ? t2->left : nullptr); innerMerge(p->right, flag1 ? t1->right : nullptr, flag2 ? t2->right : nullptr); } };
-
Recursion version-2: directly modify on
t1
class Solution { public: TreeNode *mergeTrees(TreeNode *t1, TreeNode *t2) { return innerMerge(t1, t2); } TreeNode *innerMerge(TreeNode *t1, TreeNode *t2) { if (t1 == nullptr) return t2; if (t2 == nullptr) return t1; t1->val += t2->val; t1->left = innerMerge(t1->left, t2->left); t1->right = innerMerge(t1->right, t2->right); return t1; } };
-
Iteration-version implemented by pre-order traversal, modify on
t1
:TreeNode *mergeTrees(TreeNode *t1, TreeNode *t2) { return preorderMerge(t1, t2); } TreeNode *preorderMerge(TreeNode *t1, TreeNode *t2) { typedef pair
node; if (t1 == nullptr) return t2; stack s; s.push(node(t1, t2)); while (!s.empty()) { node n = s.top(); s.pop(); if (n.second == nullptr) continue; n.first->val += n.second->val; if (n.first->left == nullptr) n.first->left = n.second->left; else s.push(node(n.first->left, n.second->left)); if (n.first->right == nullptr) n.first->right = n.second->right; else s.push(node(n.first->right, n.second->right)); } return t1; }
Average of Levels in Binary Tree
Question[637]: Given a non-empty binary tree, return the average value of the nodes on each level in the form of an array.
Example
Input:
3
/ \
9 20
/ \
15 7
Output: [3, 14.5, 11]
Explanation: The average value of nodes on level 0 is 3, on level 1 is 14.5, and on level 2 is 11. Hence return [3, 14.5, 11].
Solution
-
Level-order traversal. Use the map
sumrecord
to record the sum of each level. Usenumrecord
to record the number of nodes of each level.vector
averageOfLevels(TreeNode *root) { typedef pair node; unordered_map sumrecord; unordered_map numrecord; queue q; q.push(node(root, 0)); while (!q.empty()) { auto n = q.front(); q.pop(); sumrecord[n.second] += n.first->val; numrecord[n.second]++; if (n.first->left != nullptr) q.push(node(n.first->left, n.second + 1)); if (n.first->right != nullptr) q.push(node(n.first->right, n.second + 1)); } vector v(numrecord.size()); for (auto &x : sumrecord) v[x.first] = x.second / numrecord[x.first]; return v; } -
Level-order traversal. Only use queue, discard the help of
node
andunordered_map
.vector
levelorder(TreeNode *root) { vector v; queue q; q.push(root); while (!q.empty()) { queue nextlevel; int64_t sum = 0; int counter = 0; while (!q.empty()) { auto p = q.front(); q.pop(); sum += p->val, counter++; if (p->left != nullptr) nextlevel.push(p->left); if (p->right != nullptr) nextlevel.push(p->right); } q = nextlevel; v.push_back(sum * 1.0 / counter); } return v; }
Two Sum IV - Input is a BST
Question[653]: Given a Binary Search Tree and a target number, return true if there exist two elements in the BST such that their sum is equal to the given target.
Example
Input:
5
/ \
3 6
/ \ \
2 4 7
Target = 9
Output: True
Explanation: 9 = 3+6, 9 = 2+7, 9 = 4+5
Solution
First, implement a function named search(root, val)
which is used to search val
in a tree root
. Then, traversal the tree root
to judge every node p
whether there is another node q
satisfies p->val + q->val == k
.
bool search(TreeNode *p, int val, TreeNode *exceptNode)
{
if (p == nullptr)
return false;
if (p->val == val && p != exceptNode)
return true;
if (val < p->val)
return search(p->left, val, exceptNode);
return search(p->right, val, exceptNode);
}
bool levelorder(TreeNode *root, int k)
{
queue q;
q.push(root);
while (!q.empty())
{
auto p = q.front();
q.pop();
int val = k - p->val;
if (search(root, val, p))
return true;
if (p->left != nullptr)
q.push(p->left);
if (p->right != nullptr)
q.push(p->right);
}
return false;
}
Trim a Binary Search Tree
Question[669]: Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that all its elements lies in [L, R] (R >= L). You might need to change the root of the tree, so the result should return the new root of the trimmed binary search tree.
Example-1
Input-1:
1
/ \
0 2
L = 1
R = 2
Output-1:
1
\
2
Example-2
Input-2:
3
/ \
0 4
\
2
/
1
L = 1
R = 3
Output-2:
3
/
2
/
1
Solution
For each node of a BST, there are only three cases:
- val < L
- val > R
- L <= val <= R
When val < L, for an example:
parent parent parent
| | |
9 ==> 9 ==> right
/ \ / \
left right null right
All values in the left
sub-tree should be less than 9, hence the left
sub-tree should be discarded. And because of '9' is less than L
, hence it also should be discarded. The code to do these two operations is:
p->left = nullptr, p = trim(p->right)
The case val > R
is similar to case val < L
.
For the case L <= val <= R
, there is nothing to do on the val
node. Just continue to trim on its left sub-tree and right sub-tree.
Version-1:
TreeNode *trimBST(TreeNode *root, int L, int R)
{
return innerTrim(root, L, R);
}
TreeNode *innerTrim(TreeNode *&p, int l, int r)
{
if (p == nullptr)
return nullptr;
if (p->val < l)
{
p->left = nullptr;
return p = innerTrim(p->right, l, r);
}
else if (p->val > r)
{
p->right = nullptr;
return p = innerTrim(p->left, l, r);
}
else
{
p->left = innerTrim(p->left, l, r);
p->right = innerTrim(p->right, l, r);
return p;
}
}
Version-2:
TreeNode *trimBST(TreeNode *root, int L, int R)
{
innerTrim2(root, L, R);
return root;
}
void innerTrim2(TreeNode *&p, int l, int r)
{
if (p == nullptr)
return;
if (p->val < l)
{
p->left = nullptr, p = p->right;
innerTrim2(p, l, r);
return;
}
else if (p->val > r)
{
p->right = nullptr, p = p->left;
innerTrim2(p, l, r);
return;
}
else
{
innerTrim2(p->left, l, r);
innerTrim2(p->right, l, r);
}
}
Second Minimum Node In a Binary Tree
Question[671]: Given a non-empty special binary tree consisting of nodes with the non-negative value, where each node in this tree has exactly two or zero sub-node. If the node has two sub-nodes, then this node's value is the smaller value among its two sub-nodes. More formally, the property root.val = min(root.left.val, root.right.val)
always holds. Given such a binary tree, you need to output the second minimum value in the set made of all the nodes' value in the whole tree. If no such second minimum value exists, output -1 instead.
Example-1
Input:
2
/ \
2 5
/ \
5 7
Output: 5
Explanation: The smallest value is 2, the second smallest value is 5.
Solution
The smallest value in the tree is root->val
(at level-0) . Hence the solution is to find the smallest value in all numbers greater (at level >= 1) than root->val
.
class Solution
{
public:
int findSecondMinimumValue(TreeNode *root)
{
if (root == nullptr || root->left == nullptr)
return -1;
int minval = root->val;
int result = -1;
queue q;
auto p = root;
q.push(p);
while (!q.empty())
{
p = q.front();
q.pop();
if (p->val > minval)
result = result == -1 ? p->val : min(result, p->val);
if (p->left)
q.push(p->left);
if (p->right)
q.push(p->right);
}
return result;
}
};
Search in a Binary Search Tree
Question[700]: Given the root node of a binary search tree (BST) and a value. You need to find the node in the BST that the node's value equals the given value. Return the subtree rooted with that node. If such node doesn't exist, you should return NULL.
Example
Given the tree:
4
/ \
2 7
/ \
1 3
And the value to search: 2
2
/ \
1 3
Solution
Simple question!
class Solution
{
public:
TreeNode *searchBST(TreeNode *root, int val)
{
return iterationSearch(root, val);
}
TreeNode *recursionSearch(TreeNode *p, int val)
{
if (p == nullptr)
return nullptr;
if (p->val == val)
return p;
else if (val < p->val)
return recursionSearch(p->left, val);
else
return recursionSearch(p->right, val);
}
TreeNode *iterationSearch(TreeNode *root, int val)
{
auto p = root;
while (p != nullptr)
{
if (p->val == val)
return p;
else if (val < p->val)
p = p->left;
else
p = p->right;
}
return nullptr;
}
};
N-ary Tree
Maximum Depth of N-ary Tree
Question[559]: Given a n-ary tree, find its maximum depth. The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node. Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See examples).
Example
Input: root = [1,null,3,2,4,null,5,6]
1
/ | \
3 2 4
/ \
5 6
Output: 3
Solution
Level order traversal.
#include "leetcode.h"
#include
class Node
{
public:
int val;
vector children;
Node() {}
Node(int _val) { val = _val; }
Node(int _val, vector _children)
{
val = _val;
children = _children;
}
};
class Solution
{
public:
int maxDepth(Node *root)
{
return levelorder(root);
}
int levelorder(Node *root)
{
auto p = root;
queue q;
q.push(p);
int level = 1;
while (!q.empty())
{
queue nextlevel;
while (!q.empty())
{
p = q.front(), q.pop();
for (auto x : p->children)
nextlevel.push(x);
}
level += (!nextlevel.empty());
q = nextlevel;
}
return level;
}
};
N-ary Tree Preorder Traversal
Question[589]: Given an n-ary tree, return the preorder traversal of its nodes' values.
Example
Input: root = [1,null,3,2,4,null,5,6]
1
/ | \
3 2 4
/ \
5 6
Output: [1,3,5,6,2,4]
Solution
First step, we should have a look at perorder traversal of a binary tree, which is similar to open the door of fridge.
stack s;
s.push(root);
while (!s.empty())
{
p = s.top(), s.pop();
print(p->val);
if (p->right) s.push(p->right);
if (p->left) s.push(p->left);
}
Second, put the elephant into the fridge, including recursion method and iteration method.
class Solution
{
public:
vector result;
vector preorder(Node *root)
{
if (root == nullptr)
return result;
preorderIteration(root);
return result;
}
void preorderRecursion(Node *p)
{
if (p == nullptr)
return;
result.push_back(p->val);
for (auto x : p->children)
preorderRecursion(x);
}
void preorderIteration(Node *root)
{
auto p = root;
stack s;
s.push(p);
while (!s.empty())
{
p = s.top(), s.pop();
result.push_back(p->val);
for (auto i = p->children.rbegin(); i != p->children.rend(); i++)
{
s.push(*i);
}
}
}
};
Third, close the door of the fridge. Submit the code.
N-ary Tree Postorder Traversal
Question[590]: Given an N-ary tree, return the postorder traversal of its nodes' values.
Example
Input: root = [1,null,3,2,4,null,5,6]
1
/ | \
3 2 4
/ \
5 6
Output: [5,6,3,2,4,1]
Solution
-
Recursion
For a binary tree, postorder traversal is
left => right => root
. Hence the postorder traversal f a n-ary tree ischild[0,...,n] => root
.vector
result; void postorderRecursion(Node *p) { if (p == nullptr) return; for (auto i = p->children.begin(); i != p->children.end(); i++) postorderRecursion(*i); result.push_back(p->val); } -
Iteration
Take a look at postorder traversal of binary tree.
postorder(TreeNode *root) { l = [] auto p = root; stack
s; s.push(p); while (!s.empty()) { p = s.top(), s.pop(); l.append(p->val); if (p->left) s.push(p->left); if (p->right) s.push(p->right); } return reverse(l) } The postorder traversal of Nary-Tree is similar.
vector
result; void postorderIteration(Node *root) { auto p = root; stack s; s.push(p); while (!s.empty()) { p = s.top(), s.pop(); result.push_back(p->val); for (auto x : p->children) s.push(x); } reverse(result.begin(), result.end()); }