二分查找模板

二分法模板
链接:https://blog.csdn.net/qq_19446965/article/details/82184672

• 循环条件到底哪一个?
	• start <= end
	• start < end
	• start + 1 < end
• 指针变换到底哪一个
	• start = mid
	• start = mid + 1
	• start = mid - 1

弄不好就死循环,弄不好边界就失误
 
例:nums = [1,1], target = 1
使用start < end 会出现死循环

模板:
def bin_search(nums, target):
    if not nums or target < nums[0] or target > nums[-1]:
        return -1
 
    left = 0
    right = len(nums) - 1
    while left + 1 < right:      # 统一都用 <
        mid = left + (right - left)//2
        if target > nums[mid]:    # 左边界> 右边界>=
            left = mid            # 永远不动,全文通用
        elif target < nums[mid]:
            right = mid           # 永远不动,全文通用
        else:
            return mid            # 等号可以合并到 < 或 > 也可以单独考虑
 
    if nums[right] == target:
        return right
    if nums[left] == target:
        return left
 
    return -1                     # 较小的left,较大的righ
		
总结:
1.判断是返回left,还是返回right
     因为我们知道最后跳出while (left + 1< right)循环条件是left+ 1 == right。
     最后left 和right一定是卡在"边界值"的左右两边
     以数组{1, 2, 3, 3, 4,5}为例,
     如果需要查找第一个等于或者小于3的元素下标,我们比较的key值是3,则最后left和right需要满足以下条件:
     left——>2, right ——>3
     我们比较的key值是3,所以此时我们需要返回left。

    所以,最后只需要判断left或right是否等于target即可。
2.判断出比较符号
     左边界附近都是>
     右边界附近都>=

————————————————
模板讲解:https://blog.csdn.net/qq_19446965/article/details/82184672
模板套用练习题1:https://www.cnblogs.com/rnanprince/p/11743414.html
二分查找(倍增法):https://blog.csdn.net/qq_19446965/article/details/102811021
模板套用练习题2:https://www.cnblogs.com/rnanprince/p/11761940.html


倍增:
二分查找(倍增法):https://blog.csdn.net/qq_19446965/article/details/102811021

首先特判一下首个元素. 然后设定 idx = 0 为查找的下标, jump = 1 为向后跳跃的长度.

每次循环将 idx 向后移动 jump 个元素, 并将 jump 翻倍. 而如果移动后的位置不小于 target, 则 jump 缩小至一半.

即我们在保证每次跳跃后的 idx 的位置都小于target的前提下, 倍增式地跳跃, 以此保证 O(logn) 的时间复杂度.

循环终止的条件就是 jump == 0, 就是说, 这时 idx + 1 的位置以及不小于 target 了 (此时idx位置的仍然是小于target)

也就是说, 到最后idx指向的元素是: 最大的小于target的元素. 返回答案前判断一下 idx + 1 是否 target 即可.
————————————————

辗转相除法:
 又名欧几里德算法, 是求最大公约数的一种方法。它的具体做法是:用较大的数除以较小的数,再用除数除以出现的余数(第一余数),再用第一余数除以出现的余数(第二余数),如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
 
 def gcd(big, small):
    if small != 0:
        return gcd(small, big % small)
    else:
        return big

————————————————

快速幂算法
计算x的n次方, 即计算x^n。

由公式可知: x^n = x^{n/2} * x^{n/2}。

如果我们求得x^{n/2}, 则可以O(1)求出x^n, 而不需要再去循环剩下的n/2次。

以此类推,若求得x^{n/4}, 则可以O(1)求出x^{n/2}
 。。。。
因此一个原本O(n)的问题,我们可以用O(logn)复杂度的算法来解决。

递归版本的快速幂算法
def power(x, n):
    if n == 0:
        return 1
    
    if n % 2 == 0:
        tmp = power(x, n // 2)
        return tmp * tmp
    else:
        tmp = power(x, n // 2)
        return tmp * tmp * x

非递归版本
def power(x, n):
    ans = 1
    base = x
    while n > 0:
        if n % 2 == 1:
            ans *= base
        base *= base
        n = n // 2
    return ans
————————————————

斐波那契数列-求第n项
非递归版
def fibonacci(n):
    res = [0, 1]
    while len(res) <= n:
        res.append(res[-1]+res[-2])
    return res[n]

递归版
def fibonacci(n):
    if n == 0:
        return 0
    if n == 1 or n == 2:
        return 1
    return fibonacci(n - 1) + fibonacci(n - 2)
题型参见:https://www.cnblogs.com/rnanprince/p/11600976.html

  

你可能感兴趣的:(二分查找模板)