资源总是有限的,程序运行如果对同一个对象进行操作,则有可能造成资源竞争,也可能导致读写混乱,此时需要引入锁。
锁提供如下方法:
1.Lock.acquire([blocking]) # 上锁
2.Lock.release() # 解锁
3.threading.Lock() # 加载线程的锁对象,是一个基本的锁对象,一次只能一个锁定,其余锁请求,需等待锁释放后才能获取
4.threading.RLock() 多重锁,在同一线程中可用被多次acquire。如果使用RLock,那么acquire和release必须成对出现,
调用了n次acquire锁请求,则必须调用n次的release才能在线程中释放锁对象
例如:
无锁:
1 import threading 2 import time 3 4 g_num = 0 5 6 7 def work1(num): 8 for i in range(num): 9 global g_num 10 g_num += 1 11 print("___in work1,g_num is %d" % g_num) 12 13 14 def work2(num): 15 for i in range(num): 16 global g_num 17 g_num += 1 18 print("___in work2,g_num is %d" % g_num) 19 20 21 t1 = threading.Thread(target=work1, args=(1000000,)) 22 t2 = threading.Thread(target=work2, args=(1000000,)) 23 t1.start() 24 t2.start() 25 26 time.sleep(3) 27 28 print("___g_num is %d" % g_num)
运行结果:
1 ___in work1,g_num is 1194618 2 ___in work2,g_num is 1334899 3 ___g_num is 1334899
引入锁:
1 import threading 2 import time 3 4 # 定义一个全局变量 5 g_num = 0 6 7 8 def work1(num): 9 global g_num 10 for i in range(num): 11 # 互斥锁上锁和解锁间包含的代码越少越好 12 mutex.acquire() 13 g_num += 1 14 mutex.release() 15 print("___in work1,g_num is %d" % g_num) 16 17 18 def work2(num): 19 global g_num 20 for i in range(num): 21 mutex.acquire() 22 g_num += 1 23 mutex.release() 24 print("___in work2,g_num is %d" % g_num) 25 26 27 # 创建一个互斥锁,默认是没有上锁的 28 mutex = threading.Lock() 29 30 31 t1 = threading.Thread(target=work1, args=(1000000,)) 32 t2 = threading.Thread(target=work2, args=(1000000,)) 33 t1.start() 34 t2.start() 35 36 time.sleep(3) 37 38 print("___g_num is %d" % g_num)
运行结果:
1 ___in work1,g_num is 1945701 2 ___in work2,g_num is 2000000 3 ___g_num is 2000000
其中:
lock=threading.Lock()加载锁的方法也可以换成lock=threading.RLock()
如果将上面的work1改为:
1 mutex.acquire() 2 global g_num 3 mutexk.acquire() 4 for i in range(num): 5 g_num += 1 6 mutex.release() 7 print("___in work1,g_num is %d" % g_num) 8 mutexk.release()
那么:
lock=threading.Lock() 加载的锁,则一直处于等待中,锁等待
而lock=threading.RLock() 运行正常
lock()避免死锁的解决方法:
1.程序设置时要尽量避免(银行家算法)
2.添加超时时间