简单剖析下常用的ArrayList类的源码
ArrayList的核心还是基于数组实现的。
//实现了Serializable接口,因此它支持序列化,能够通过序列化传输
//实现了RandomAccess接口,支持快速随机访问,实际上就是通过下标序号进行快速访问
//实现了Cloneable接口,能被克隆。
public class ArrayList extends AbstractList
implements List, RandomAccess, Cloneable, java.io.Serializable
{
//提供序列化用的
private static final long serialVersionUID = 8683452581122892189L;
//默认的初始容量为10
private static final int DEFAULT_CAPACITY = 10;
//...
private static final Object[] EMPTY_ELEMENTDATA = {};
//arraylist用来保存对象的数组,transient告诉序列化的时候不要管这个数组
transient Object[] elementData;
//arraylist的大小
private int size;
//构造函数,不能传入负数,否则报错,然后初始化elementData数组的大小
public ArrayList(int initialCapacity) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
}
/*
空构造函数,以前的代码直接初始化容量为10的容量数组:this(10)
现在Android Api25中,这里直接初始化一个空数组,等add的时候再设置容量为10
懒加载模式
*/
public ArrayList() {
super();
this.elementData = EMPTY_ELEMENTDATA;
}
//构造函数,将c集合里面的东西放array里面
public ArrayList(Collection extends E> c) {
elementData = c.toArray();
size = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
}
/*
将array的size设为实际size大小
modCount表示修改的次数,给迭代器iterator用的,实现fail-fast机制
用于多线程的时候modCount不一致,快速抛出异常
*/
public void trimToSize() {
modCount++;
if (size < elementData.length) {
elementData = Arrays.copyOf(elementData, size);
}
}
//这个方法就是确保array的容量至少为minCapacity
public void ensureCapacity(int minCapacity) {
int minExpand = (elementData != EMPTY_ELEMENTDATA)
// any size if real element table
? 0
// larger than default for empty table. It's already supposed to be
// at default size.
: DEFAULT_CAPACITY;
if (minCapacity > minExpand) {
ensureExplicitCapacity(minCapacity);
}
}
//接上面的方法,增加修改次数,判断需要的最小容量大于实际容量再操作
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
/*
以前增加的容量为old的三分之二再加一:
int newCapacity = (oldCapacity * 3)/2 + 1
现在增加的容量为old的二分之一:
int newCapacity = oldCapacity + (oldCapacity >> 1)
*/
private void grow(int minCapacity) {
int oldCapacity = elementData.length;
//右移一位表示除以2
int newCapacity = oldCapacity + (oldCapacity >> 1);
//这个newCapacity < minCapacity的代码下面这样写有什么优势?
//下面主要是判断oldCapacity=1的情况下,newCapacity其实等于oldCapacity的情况?
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
public int size() {return size;}
public boolean isEmpty() {return size == 0;}
//判断包含
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
//这里先判断null对象,非null的对象是通过equals()来判断的
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
//反过来查询返回第一个的i
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
//浅拷贝,并且将修改次数置0
public Object clone() {
try {
ArrayList> v = (ArrayList>) super.clone();
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
//转化为数组
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
/*
返回ArrayList元素组成的数组
如果数组a的容量小于list,则新建一个数组,反之直接复制到数组
*/
public T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
//取出列表中指定的元素
public E get(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
return (E) elementData[index];
}
//替换指定位置的元素
public E set(int index, E element) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
E oldValue = (E) elementData[index];
elementData[index] = element;
return oldValue;
}
//添加元素
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
private void ensureCapacityInternal(int minCapacity) {
//和ensureExplicitCapacity的区别在这里
//如果是一开始没有指定大小的初始化list,则比较默认的容量和传入的值哪个大,就用哪个
//反正不要小于10即DEFAULT_CAPACITY
if (elementData == EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
//添加元素到指定位置,指定位置和之后的元素后移一个位置
public void add(int index, E element) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
ensureCapacityInternal(size + 1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
//删除指定位置的元素,就是将指定位置后面的元素都往前挪一个位置,再把最后一个元素置空,交给垃圾回收器处理
public E remove(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
modCount++;
E oldValue = (E) elementData[index];
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
//移除指定元素对象
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
//上面的内部方法,原理主要还是找出那个对象的位置,然后跟remove(index)类似
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}
//将所有元素置空,交给gc处理
public void clear() {
modCount++;
// clear to let GC do its work
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
//将c集合转化为数组,然后拷贝到list数组后面
public boolean addAll(Collection extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
//上面一个方法指定位置的拷贝
public boolean addAll(int index, Collection extends E> c) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
int numMoved = size - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
//保护方法,不是供程序员调用的,核心还是拷贝方法,将移除的那些置空
protected void removeRange(int fromIndex, int toIndex) {
// Android-changed : Throw an IOOBE if toIndex < fromIndex as documented.
// All the other cases (negative indices, or indices greater than the size
// will be thrown by System#arrayCopy.
if (toIndex < fromIndex) {
throw new IndexOutOfBoundsException("toIndex < fromIndex");
}
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// clear to let GC do its work
int newSize = size - (toIndex-fromIndex);
for (int i = newSize; i < size; i++) {
elementData[i] = null;
}
size = newSize;
}
//序列化的写入,读取,迭代器部分
...
}
其他注意的就是ArrayList基于数组实现,可以通过下标索引直接查找到指定位置的元素,因此查找效率高,但每次插入或删除元素,就要大量地移动元素,插入删除元素的效率低;在查找给定元素索引值等的方法中,源码都将该元素的值分为null和不为null两种情况处理,ArrayList中允许元素为null。
自己先看一遍源码再看别人的分析效果棒棒的,参考:
ArrayList源码剖析