- NLU-预训练模型-2018:Bert(二)【“Masked LM”缺点:①预训练与微调不一致;②忽略了掩码位置间的依赖关系】【复杂度:O(n^2·d);n:输入序列长度(规定最长512)】
u013250861
#NLP/词向量_预训练模型bert人工智能深度学习
五、BERT中的词嵌入1、为什么要使用BERT的嵌入使用BERT从文本数据中提取特征,即单词和句子的嵌入向量。我们可以用这些词和句子的嵌入向量做什么?首先,这些嵌入对于关键字/搜索扩展、语义搜索和信息检索非常有用。例如,如果你希望将客户的问题或搜索与已经回答的问题或文档化的搜索相匹配,这些表示将帮助准确的检索匹配客户意图和上下文含义的结果,即使没有关键字或短语重叠。其次,或许更重要的是,这些向量被
- 论文学习11:Boundary-Guided Camouflaged Object Detection
zl29
学习目标检测人工智能
代码来源GitHub-thograce/BGNet:Boundary-GuidedCamouflagedObjectDetection模块作用BGNet利用额外的目标相关边缘语义信息来引导COD任务的特征学习,从而强制模型生成能够突出目标结构的特征。这一机制有助于提高目标边界的精准定位,从而提升伪装目标的检测性能。模块结构BGNet的架构基于Res2Net-50,编码器提取多级特征,解码器通过EA
- 大模型微调
归一码字
人工智能
文章目录前言一、使用的库二、数据预处理1.引入库2.读入数据3.对数据进行预处理4.转换为json格式文件三,使用算子分析数据并进行数据处理四,划分训练集和测试集五,编写训练脚本开始训练六,进行模型推理人工评估总结前言这是使用知乎评论进行模型微调,让模型输出更加通畅接近人的使用语言一、使用的库modelscope:提供模型、数据集下载能力data-juicer:提供数据集处理能力ms-swift:
- AI 大模型应用数据中心的数据迁移架构
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、数据迁移、架构设计、迁移策略、性能优化、安全保障1.背景介绍随着人工智能(AI)技术的飞速发展,大规模AI模型的应用日益广泛,涵盖了自然语言处理、计算机视觉、语音识别等多个领域。这些AI模型通常需要海量的数据进行训练和推理,因此数据中心作为AI应用的基础设施,显得尤为重要。然而,随着AI模型规模的不断扩大,数据中心面临着新的挑战:数据规模庞大:AI模型的训练和推理需要海量数据
- 如何判断自己是否是一位合格的项目经理?
在快速变化的商业环境中,项目经理的角色早已从"任务执行者"进化为"战略推动者"。一位合格的项目经理不仅需要具备扎实的专业知识,更需要在复杂环境中协调资源、化解冲突并推动目标达成。本文将从项目经理的能力模型、项目全流程的关键环节评估标准以及自我检验方法三个维度,系统性地探讨如何判断自身是否胜任这一角色。一、项目经理的黄金三角能力模型硬技能基石(30%)体系化知识结构:掌握PMBOK七大知识领域(范围
- 六十天前端强化训练之第二十一天大师级详解 React Context API:从原理到实战
编程星辰海
#前端前端react.jsjavascriptReactContextAPI
=====欢迎来到编程星辰海的博客讲解======看完可以给一个免费的三连吗,谢谢大佬!目录一、庖丁解牛:深入理解ContextAPI1.1设计哲学与运转机制工作原理三步曲:1.2核心三剑客详解1.3性能优化要诀二、手把手实现主题切换系统2.1完整代码实现(逐行注释版)2.2配套CSS样式设计三、关键知识点拆解3.1状态初始化策略3.2CSS变量注入原理3.3性能优化实践3.4可访问性最佳实践四、
- 编程-设计模式 30:拦截过滤器模式(Interceptor Filter Pattern)
漆黑的莫莫
编程设计模式J2EE设计模式设计模式
设计模式30:拦截过滤器模式(InterceptorFilterPattern)定义与目的定义:拦截过滤器模式是一种用于Web应用程序中的模式,它提供了一种机制来拦截请求和响应,并在它们到达目标处理程序之前执行一些预处理任务,在响应返回客户端之前执行一些后处理任务。目的:该模式的主要目的是通过将请求处理逻辑与请求的预处理和后处理任务分离,提高应用程序的模块化程度和可维护性。实现示例假设我们有一个简
- 华为OD机试九日集训第2期 - 按算法分类,由易到难,循序渐进,提升编程能力和解题技巧,从而提高机试通过率
哪 吒
搬砖工逆袭Java架构师华为od算法九日集训Java
目录一、适合人群二、本期训练时间三、如何参加四、数据结构与算法大纲五、华为OD九日集训第1期第1天、逻辑分析第2天、队列第3天、双指针第4天栈第5天滑动窗口第6天、二叉树第7天、并查集第8天、矩阵第9天、贪心算法六、国内直接使用满血ChatGPT4o、o1、o3-mini-high、Claude3.7Sonnet、满血DeepSeekR11、纯原版ChatGPT、Claude2、技术支持3、支持所
- 模型部署实战:PyTorch生产化指南
小诸葛IT课堂
pytorch人工智能python
一、为什么要做模型部署?模型部署是将训练好的模型投入实际应用的关键步骤,涉及:模型格式转换(TorchScript/ONNX)性能优化(量化/剪枝)构建API服务移动端集成本章使用ResNet18实现图像分类,并演示完整部署流程。二、模型转换:TorchScript与ONNX1.准备预训练模型importtorchimporttorchvision#加载预训练模型model=torc
- H800核心性能优化技术
智能计算研究中心
其他
内容概要作为新一代AI加速卡的核心创新载体,H800通过异构计算架构与动态能效管理技术的协同设计,实现了从硬件底层到应用层的系统性优化。其技术突破聚焦于张量核心重构带来的计算密度提升、混合精度运算对资源利用率的增强,以及智能散热方案在复杂负载场景下的稳定性保障。这些创新不仅显著提升了30%以上的能效比,更通过精细化任务调度机制,解决了深度学习训练中高并发数据处理与模型参数同步的效率瓶颈。值得关注的
- Goose开源程序本地机上 AI 代理,能够从头到尾自动执行复杂的开发任务。Goose 不仅可以提供代码建议,还可以自主构建整个项目、编写和执行代码、调试故障、编排工作流程以及与外部 API 交互
struggle2025
策略模式人工智能交互
一、软件下载文末提供程序和源码下载Goose是您的机上AI代理,能够从头到尾自动执行复杂的开发任务。Goose不仅可以提供代码建议,还可以自主构建整个项目、编写和执行代码、调试故障、编排工作流程以及与外部API交互。无论您是在构建想法原型、优化现有代码,还是管理复杂的工程管道,goose都能适应您的工作流程并精确执行任务。goose专为实现最大的灵活性而设计,可与任何LLMAPI配合使用,并与支持
- 下载码怎么使用
小小河马、
java
CSDN下载码是通过用户完成一些既定的任务而赠送给用户的。在完成一些要求的任务后,系统会送出一个下载码。用户可以使用该下载码去下载需要的资源。注意下载码是有有效期的,一旦收到了下载码请尽快使用。使用下载码只能下载不需要积分的资源,如果需要积分的资源,下载码是没有用的。博客积分是CSDN对用户努力的认可和奖励,也是衡量博客水平的重要标准。博客等级也将由博客积分唯一决定。积分规则具体如下:1、每发布一
- 【AI论文】RWKV-7“鹅”模型,具备富有表现力的动态状态演化能力
东临碣石82
人工智能
摘要:我们推出RWKV-7“鹅”,这是一种全新的序列建模架构,同时发布的还有预训练语言模型。在多语言任务中,这些模型在30亿参数规模下实现了下游性能的全新最优水平,并且在英语语言性能上,尽管训练所用的标记数量远少于其他顶尖30亿参数模型,但仍能与当前最优水平相媲美。然而,RWKV-7模型仅需常量内存使用和每个标记的常量推理时间。RWKV-7引入了一种新泛化的delta规则,该规则具有向量值门控和上
- Dify 项目开源大模型应用开发平台
魔王阿卡纳兹
IT杂谈开源项目观察开源difLLM开发平台
Dify是一款开源的大语言模型(LLM)应用开发平台,旨在简化生成式AI应用的创建、部署和持续优化流程。以下从多个维度对该项目进行详细介绍:一、项目定义与核心功能Dify的核心定位是结合后端即服务(BaaS)和LLMOps理念,为开发者提供从原型到生产的全生命周期支持。其核心功能包括:可视化工作流构建通过可视化画布(如ReactFlow)编排AI工作流,支持多步骤任务处理,例如文档解析、模型推理和
- 【玩转google云】在 Google Cloud 和 AWS 之间创建高可用性 VPN 连接(二)
Coder加油!
手把手教学玩转google云aws云计算devops客户网关虚拟网关
目录1、安装AWSCLI2、配置AWSCLI3、AWS命令创建两个客户网关4、创建虚拟网关并将其挂接到您的VPC网络5、创建采用动态路由的VPN连接上一篇我们讲到了怎么在在GoogleCloud上创建高可用性VPN网关和路由器,这一篇我们将介绍怎么在AWS上面创建网关和VPN连接。AWS命令行界面(AWSCLI)是一种开源工具,允许您使用命令行操作AWS服务。您可以使用AWSCLI自动化任务、管理
- “平均工作电流 10mA / 24HRAVG” 的含义 (由DS-R1生成)
兴趣使然_
嵌入式硬件相关ai
“平均工作电流10mA/24HRAVG”的含义可解析如下:分解解释平均工作电流10mA指设备在正常工作状态下,平均消耗的电流为10毫安(mA)。这里的“平均”可能包含不同工作模式(如运行、待机、休眠)或周期性任务下的综合电流值。/24HRAVG“24HR”表示24小时(Hour),“AVG”表示平均(Average)。组合含义:按24小时为周期计算的平均电流,即设备在一天内的整体平均功耗为10mA
- 基于Python的金融领域AI训练数据抓取实战(完整技术解析)
海拥✘
python金融人工智能
项目背景与需求分析场景描述为训练一个覆盖全球金融市场的多模态大语言模型(LLM),需实时采集以下数据:全球30+主要证券交易所(NYSE、NASDAQ、LSE、TSE等)的上市公司公告企业财报PDF文档及结构化数据社交媒体舆情数据(Twitter、StockTwits)新闻媒体分析(Reuters、Bloomberg)技术挑战地理封锁:部分交易所(如日本TSE)仅允许本国IP访问历史数据动态反爬:
- 【AI论文】ReCamMaster:基于单视频的相机控制式生成渲染
东临碣石82
人工智能数码相机计算机视觉
摘要:相机控制在基于文本或图像条件的视频生成任务中已得到积极研究。然而,尽管改变给定视频的相机轨迹在视频创作领域具有重要意义,但这一领域的研究仍显不足。由于需要保持多帧外观和动态同步的额外约束,这一任务颇具挑战性。为解决这一问题,我们提出了ReCamMaster,这是一个相机控制的生成式视频重渲染框架,能够在新的相机轨迹下重现输入视频中的动态场景。其核心创新在于通过一种简单而强大的视频条件机制,利
- C++并发编程有什么最佳实践?
c++
在C++并发编程中,遵循最佳实践可以显著提升代码的效率、可维护性和可扩展性。以下是一些关键的最佳实践:使用线程池管理线程线程池可以预先创建一组线程,并在需要时将任务分配给这些线程。这种方式减少了创建和销毁线程的开销,提高了程序性能。例如:cpp复制autopool=std::make_shared(std::thread::hardware_concurrency());pool->push(st
- 甘特图:项目经理的时空魔方,解锁高效管理的秘密
在1917年,机械工程师亨利·甘特发明了一张看似简单的条形图,却彻底改变了人类管理复杂工程的方式。如今,这张图表在波音787客机研发、北京冬奥会场馆建设中依然发挥着关键作用。甘特图不仅是进度条的可视化,更是项目管理的时空坐标系——它能将抽象的时间、资源和任务转化为具象的作战地图,让项目经理如同掌握时空魔方般操控项目进程。一、甘特图的四大降维打击优势时空折叠术:三维信息二维呈现时间维度:在特斯拉上海
- springboot+kafka+邮件发送(最佳实践)
weixin_30347335
大数据java数据库
导读集成spring-kafka,生产者生产邮件message,消费者负责发送引入线程池,多线程发送消息多邮件服务器配置定时任务生产消息;计划邮件发送实现过程导入依赖1.85.1.382.1.51.3.22.8.23.4org.springframework.bootspring-boot-starterorg.springframework.bootspring-boot-starter-tes
- 基于多头注意机制的多尺度特征融合的GCN的序列数据(功率预测、故障诊断)模型及代码详解
清风AI
深度学习算法详解及代码复现人工智能神经网络深度学习pythoncondapippandas
GCN基础在深度学习领域中,图卷积网络(GCN)是一种强大的图数据处理工具。它将卷积操作扩展到图结构上,能够有效捕捉图中节点之间的关系信息。GCN的核心思想是通过聚合邻居节点的特征来更新目标节点的表示,这种局部聚合机制使得GCN能够学习到图的拓扑结构和节点属性。GCN的主要构成要素包括节点特征矩阵、邻接矩阵和卷积核。通过多次迭代,GCN可以逐步学习到图中节点的高阶表示,为后续的分类、预测等任务提供
- 推测未来Agentic形态:Dynamic Cognitive Contextual Agent with Reinforcement Learning (DCCA-RL)
weixin_40941102
语言模型
在AIAgent设计模式领域,我们见证了从简单的ReAct到复杂的LATS的演进,这些模式通过反思、工具使用、规划和多代理协作,极大地提升了AI的自主性和智能性。然而,随着任务复杂度和动态性需求的增加,现有模式逐渐显现出局限性——多Agent协作带来的联合误差和单Agent设计的适应性不足。为此,我们基于对现有模式的全面分析,提出了一个更先进的单Agent框架:DynamicCognitiveCo
- PyTorch模型训练实战指南:掌握动态图特性与工业级部署技巧
lmtealily
pytorch人工智能python
前言在深度学习领域,PyTorch凭借其动态计算图、高效的自动微分系统及高度Pythonic的设计哲学,已成为学术界与工业界的主流框架。其即时执行模式大幅简化了模型调试流程,而灵活的模块化设计则为复杂模型的构建提供了坚实基础。然而,从实验原型到工业级部署的全链路实践中,开发者仍需系统性掌握框架核心特性与工程化技巧。本文以实战为导向,深入剖析PyTorch动态图机制与自动微分原理,详解从数据预处理、
- 数据分析_python进行数据筛选1_行筛选
Monkey*王
python数据分析pandas
以titanic的训练数据为例进行展示,为了简化取前十行为例首先导入模块,导入数据importpandasaspdimportnumpyasnpdf=pd.read_csv(r"C:\Users\admin\Desktop\train.csv")df=df.head(10)df.index=['a','b','c','d','e','f','g','h','i','g']筛选单行1.利用df[行索
- 深入解析:C# 中 `Task.Delay` 与 `Thread.Sleep` 的对比与实战
墨夶
C#学习资料1c#开发语言
嘿,小伙伴们!今天我们要一起深入探讨C#中的Task.Delay和Thread.Sleep。想象一下,你正在开发一个需要处理异步操作的应用程序,如何有效地管理线程和延迟执行任务呢?别急,让我们通过这篇文章来详细解析Task.Delay和Thread.Sleep的区别,并涵盖以下内容:基本概念Thread.Sleep的用法Task.Delay的用法对比分析实战示例注意事项与最佳实践常见面试题及答案正
- 《魔兽争霸-黑潮》游戏秘籍
小魚資源大雜燴
游戏
DECKMEOUT部队升级EVERYLITTLETHINGSHEDOES魔法升级GLITTERINGPRIZES增加黄金、木材、油量ITISAGOODDAYTODIE无敌MAKEITSO加快建筑、训练、升级的速度ONSCREEN地图全开,包括所有活动SHOWPATH地图全开,不包括所有活动HATCHET加快砍树速度SPYCOB增加油量5000单位TIGERLILY开启跳关模式,再输入“HUMANx
- 【Dive Into Stable Diffusion v3.5】1:开源项目正式发布——深入探索SDv3.5模型全参/LoRA/RLHF训练
Donvink
大模型#AIGCstablediffusionAIGC人工智能机器学习深度学习
目录1引言2项目简介3快速上手3.1下载代码3.2环境配置3.3项目结构3.4下载模型与数据集3.5运行指令3.6核心参数说明3.6.1通用参数3.6.2优化器/学习率3.6.3数据相关4结语1引言在人工智能和机器学习领域,生成模型的应用越来越广泛。StableDiffusion作为其中的佼佼者,因其强大的图像生成能力而备受关注。今天,我的开源项目DiveIntoStableDiffusionv3
- 开源模型应用落地-qwen模型小试-调用Qwen2-7B-Instruct-进阶篇(十二)
开源技术探险家
开源模型-实际应用落地#深度学习自然语言处理语言模型
一、前言经过前五篇“qwen模型小试”文章的学习,我们已经熟练掌握qwen大模型的使用。然而,就在前几天阿里云又发布了Qwen2版本。无论是语言模型还是多模态模型,均在大规模多语言和多模态数据上进行预训练,并通过高质量数据进行后期微调以贴近人类偏好。本文将介绍如何使用Transformers库进行模型推理(相较于qwen1系列,使用方式上有较大的调整),现在,我们赶紧跟上脚步,去体验一下新版本模型
- 基于大模型的腮腺多形性腺瘤全周期诊疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2研究现状与趋势二、大模型预测原理与方法2.1大模型概述2.2数据收集与预处理2.3模型训练与优化三、术前预测与评估3.1肿瘤特征预测3.2风险评估3.3案例分析四、术中方案制定与实施4.1手术方案选择4.2面神经保护策略4.3麻醉方案确定五、术后恢复与并发症预测5.1恢复情况预测5.2并发症风险预测5.3案例分析六、术后护理与康复6.1护理措施6.2康复训练6
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比