SPSS问题

1.SPSS中变量视图里的度量标准的三个选项是什么意思

  Nominal名义变量是对数据进行分类得到的变量,如按性别分为男女,按年龄分为老、中、青;
  Ordinal顺序变量是对数据进行排序得到的变量,如按成绩先后分为第一、第二、第三、第四等;
  Scale 定距变量是对数据经过按标准测量,或使用工具测量后得到的数据,有绝对零点或相对零点的数据:有绝对零点的如长度、重量等;有相对零点的如温度、成绩、智商等。

2.ctrl + h替换(男变为1),选全部替换会出问题

3.描述性分析里的“将标准化的分另存为变量”是什么意思(得到Z+变量名)

4.偏度和峰度什么意思(峰度(Kurtosis)和偏度(Skewness)) 

  峰度是描述总体中所有取值分布形态陡缓程度的统计量。这个统计量需要与正态分布相比较,峰度为0表示该总体数据分布与正态分布的陡缓程度相同;峰度大于0表示该总体数据分布与正态分布相比较为陡峭,为尖顶峰;峰度小于0表示该总体数据分布与正态分布相比较为平坦,为平顶峰。峰度的绝对值数值越大表示其分布形态的陡缓程度与正态分布的差异程度越大。
  偏度与峰度类似,它也是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性。这个统计量同样需要与正态分布相比较,偏度为0表示其数据分布形态与正态分布的偏斜程度相同;偏度大于0表示其数据分布形态与正态分布相比为正偏或右偏,即有一条长尾巴拖在右边,数据右端有较多的极端值;偏度小于0表示其数据分布形态与正态分布相比为负偏或左偏,即有一条长尾拖在左边,数据左端有较多的极端值。偏度的绝对值数值越大表示其分布形态的偏斜程度越大。

                              SPSS问题                                                  SPSS问题

5.列联表分析和层分析

6.Q_Q图什么用

7.变量视图里的角色什么用

8.变量视图里值标签(主要方便数据输入,男输入M即可,做图表时M会自动替换为男)

9.SPSS按行汇总和按列汇总什么区别

  按行汇总可给出更为复杂的报告形式,输出格式的设置也更为详细;按列汇总的功能与按行汇总的功能基本相同,但是不能列出原始数据,输出格式也稍有差异。

  有人说就是土豆丝和土豆片的区别

10.卡方检验

11.Z检验是什么

12.小概率反证法  

  打个比方就是要判断一个人有罪无罪的道理,判定有罪就是对应的被择假设,判定有罪只要找到一项犯罪证据就能判定你有罪,因此判有罪通常结论是可靠的,如果判你无罪,对应的就是原假设,判你无罪并不能说明你真的无罪,只是找不到你犯罪的证据而已,这样比喻通常容易理解一点。

13.T检验 

  T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。

  t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与Z检验、卡方检验并列。

http://baike.baidu.com/view/557340.htm

14.标准误

  标准差(Standard Deviation) ,也称均方差(mean square error)
  各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数
  标准差是方差的算术平方根。
  标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量。对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差。  标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差。

15.参数检验其实检验的是参数也就是两个或几个统计量间的差异,而非参数检验其实检验的是分布是否相同而不是看参数或统计量的差异.

16.四分位数:四分位数(Quartile),即统计学中,把所有数值由小到大排列并分成四等份,处于三个分割点位置的得分就是四分位数。

17.残差是指观测值与预测值(拟合值)之间的差,即是实际观察值与回归估计值的差。

18.什么是游程检验

19.皮尔逊相关系数?

  http://baike.baidu.com/view/779030.htm

20.异方差性

  http://baike.baidu.com/view/177423.htm

21.自变量 因变量 内生变量 外生变量 

  任何一个系统(或模型)都是由各种变量构成的,当我们分析这些系统(或模型)时,可以选择研究其中一些变量对另一些变量的影响,那么我们选择的这些变量就称为自变量,而被影响的量就被称为因变量。
在经济模型中,内生变量是指该模型所要决定的变量。外生变量指由模型以外的因素所决定的已知变量,它是模型据以建立的外部条件。内生变量可以在模型体系内得到说明,外生变量决定内生变量,而外生变量本身不能在模型体系中得到说明。参数通常是由模型以外的因素决定的,因此也往往被看成外生变量。例:P=a+bQ,表示价格与数量的关系,则a、b是参数,都是外生变量;P、Q是模型要决定的变量,所以是内生变量。除此之外,譬如相关商品的价格,人们的收入等其他于模型有关的变量,都是外生变量。而Q随P的变化而变化。Q是因变量,P是自变量。在一个模型中,外生变量不可能是自变量和因变量,内生变量就是自变量或者因变量中的一个。

 

22.单侧检验和双侧检验 

  单侧检验是看是否显著大于  或者是否显著小于而双侧检验则是一步看出两者之间有显著差异,这个差异有可能是显著大,也可能是显著小。
http://blog.163.com/mxzhang81@126/blog/static/30062181201051210755587/

 

22.交互作用是指一因子对另一因子的不同水准有不同的效果.一个实验中有两个或两个以上的自变量,当一个自变量的效果在另一个自变量的每一个水平上不一样时,我们就说存在着自变量的交互作用。
当存在交互作用时,单纯研究某个因素的作用是没有意义的,必须分另一个因素的不同水平研究该因素的作用大小。

 23.

你可能感兴趣的:(问题)