《评人工智能如何走向新阶段》后记(再续4)

《评人工智能如何走向新阶段》后记(再续4)_第1张图片 由AI科技大本营下载自视觉中国

41. 在人工智能感知阶段,依靠数据驱动的深度学习算法。目前5种最流行的深度学习架构: ① 递归神经网络(RNN)② 长短期记忆 (LSTM)/门控递归单元(GRU)③卷积神经网络 (CNN)④深度信息网络 (DBN)⑤深度叠加网络(DSN)。

不同学习架构被广泛用于下列场景中:
①RNN,语音识别,手稿识别
②LSTM/GRU 网络,自然语言文本压缩,手势识别、图像说明
③CNN, 图像识别、视频分析、自然语言理解
④DBN, 图像识别、信息检索、自然语音理解、故障预测
⑤DSN, 信息检索、持续语音识别
(IBM 供稿)

42. 深度学习是通过一系列架构来表示的,这些架构可为各种各样的问题领域构建解决方案。尽管构建这些类型的深度架构可能很复杂,但可使用各种开源解决方案(如Caffe、Deep Learning4j 、 TensorFlow、 DDL等)来快速启动和运行。(IBM 供稿)

43. 生物学灵感,神经网络代表着一种受人类大脑启发的信息处理范例。在大脑中,神经元将轴突和树突紧密连接,并通过突触在它们之间传递化学信号。人类大脑拥有约1000亿个神经元,每个神经元最多与10,000个其他神经元相连。

44. 我想谈谈人工智能认知阶段,进入认知阶段,类脑认知计算将具有人类自主思维、意念、理解、思考、创意和灵感方面的特征。

在人工智能感知阶段,单纯依靠数据驱动的深度学习算法技术,对于图形、图像、语音的识别,做的是比对;在人工智能的认知阶段,有赖于与数学、脑科学等结合,以实现底层理论的突破,需要知识驱动和数据驱动相结合,需要建立大规模的知识库,研究知识表示,以及如何把知识、推理和数据结合起来。

IBM Watson 通过10多年医疗人工智能的研究,开始把知识驱动模式和数据驱动模式开发出来、结合起来,开辟认知新阶段。
IBM工程师说:认知计算的目标是构建能学习并自然地与人交流的系统。Watson通过Jeopardy 比赛成功击败世界级对手,就是这样做的,这也证明了认知计算的能力。

45. 是否用内含知识网络(或知识表示、知识驱动)的深度学习算法,我有一个问题:在这里是否还可以叫深度学习算法?如叫别的算法,那是什么算法?为认知阶段的问题提出解决方案?

IBM Watson的工程师说:认知计算是根据神经网络和深度学习来构建的。如此说来,说今天深度学习已达到天花板了。这种说法是否有问题(或还有上升空间)?!请IBM Watson 专家们回复。

46. 采用生物神经网络(SNN)的类脑算法是否比采用人工神经网络(ANN)的深度学习算法提高了一个档次?!
这里提出的类脑算法的机制和形式是什么?在某些情况下,类脑算法是否也可以深度学习算法来表达?请教专家。

47. 从1969年贝尔实验室孵化出UNIX,到2019年鹏程实验室等孵化出的OpenI(Open Intelligence Open Source, Open Community, Open Ecosystem)、及华为推出鸿蒙,开源50年!智能世界由科学家/工程师/程序员-AI 开发者构建欢迎挑战OpenI。启智开发者大会:Input代码/Output价值;欢迎共创、共享、贡献OpenI。

48. 目前人工智能采用最多的算法是深度学习。在这种模式下,决定人工智能应用创新有赖于下述关键因素,即大数据、算法、算力和应用场景。

49. 深度学习与产业的深度结合,有望实现应用爆发式场景,从而激发更多技术和理论创新。

50. 人工智能未来发展有很多种可能,比较热门的方向包括:脉冲神经网络硬件实现与类脑智能;数据与知识相结合学习模型。
 

你可能感兴趣的:(评人工智能如何走向新阶段?)