- mixture_of_depths
道真人
深度学习人工智能
mixture_of_depths是一种用于处理不同深度模型组合的技术或机制,通常用于模型的加载和推理过程中。它涉及将模型的不同层次或深度进行组合或切换,以提高模型的灵活性和性能。mixture_of_depths的具体含义模型组合策略:mixture_of_depths可能涉及在不同的模型深度(即层数)之间进行切换或组合,可能是为了在推理时选择合适的深度,以平衡计算资源和模型性能。这在需要对性能
- paddle nlp 3.0 全面拥抱开源大模型
路人与大师
paddle自然语言处理开源
首先安装神圣的飞桨自然语言处理框架3.0pipinstall--upgradepaddlenlp==3.0.0b0阿里云通义千问(Qwen2)系列大模型介绍阿里云通义千问(Qwen2)是阿里云推出的一系列先进的大型语言模型,涵盖了从轻量级到超大规模的各种模型,包括混合专家模型(Mixture-of-Experts,MoE)。Qwen2系列在多个自然语言处理任务上展现了卓越的性能,并且在一些基准测试
- 高斯混合模型聚类(GMM)matlab实现
唐维康
高斯混合模型聚类
GaussianMixtureModel,就是假设数据服从MixtureGaussianDistribution,换句话说,数据可以看作是从数个GaussianDistribution中生成出来的。实际上,我们在K-means和K-medoids两篇文章中用到的那个例子就是由三个Gaussian分布从随机选取出来的。实际上,从中心极限定理可以看出,Gaussian分布(也叫做正态(Normal)分
- Kmeans、混合高斯模型、EM 算法
dreampai
混合高斯模型(MixturesofGaussians)和EM算法image.pngKmeans与EM算法E步是确定隐含类别变量CM步更新其他参数u(质心)来时J(平方误差)最小化隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。总体思想还是一个迭代优化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估
- VLM 系列——MoE-LLaVa——论文解读
TigerZ*
AIGC算法深度学习人工智能AIGC计算机视觉transformer
一、概述1、是什么moe-Llava是Llava1.5的改进全称《MoE-LLaVA:MixtureofExpertsforLargeVision-LanguageModels》,是一个多模态视觉-文本大语言模型,可以完成:图像描述、视觉问答,潜在可以完成单个目标的视觉定位、名画名人等识别(问答、描述),未知是否能偶根据图片写代码(HTML、JS、CSS)。支持单幅图片输入(可以作为第一个或第二个
- VLM 系列——LLaVA-MoLE——论文解读
TigerZ*
AIGC算法深度学习人工智能AIGCtransformer计算机视觉
一、概述1、是什么Llava-MoLE是Llava1.5的改进全称《LLaVA-MoLE:SparseMixtureofLoRAExpertsforMitigatingDataConflictsinInstructionFinetuningMLLMs》,是一个多模态视觉-文本大语言模型,可以完成:图像描述、视觉问答,潜在可以完成单个目标的视觉定位、名画名人等识别(问答、描述),未知是否能偶根据图片
- 基于VCF文件做基因渗入分析(Dsuite)
DumplingLucky
Dsuite软件文章:Malinsky,M.,Matschiner,M.andSvardal,H.(2021)Dsuite‐fastD‐statisticsandrelatedadmixtureevidencefromVCFfiles.MolecularEcologyResources21,584–595.doi:https://doi.org/10.1111/1755-0998.132651.软
- MoE-LLaVA: Mixture of Experts for Large Vision-Language Models
UnknownBody
LLM语言模型人工智能
本文是LLM系列文章,针对《MoE-LLaVA:MixtureofExpertsforLargeVision-LanguageModels》的翻译。MoE-LLaVA:大型视觉语言模型的专家混合摘要1引言2相关工作3方法4实验5结论和未来方向摘要对于大型视觉语言模型(LVLM),缩放模型可以有效地提高性能。然而,扩展模型参数显著增加了训练和推理成本,因为计算中的每个token都激活了所有模型参数。
- 51-11 多模态论文串讲—VLMo 论文精读
深圳季连AIgraphX
AutoGPT自动驾驶大模型自动驾驶transformergpt-3智慧城市迁移学习算法
VLMo:UnifiedVision-LanguagePre-TrainingwithMixture-of-Modality-Experts(NeurIPS2022)VLMo是一种多模态Transformer模型,从名字可以看得出来它是一种Mixture-of-Modality-Experts(MoME),即混合多模态专家。怎么理解呢?主流VLP模型分为两种,一种是双塔结构(DualEncoder
- STM32+WIFI+Django+MySQL+BIM实现数字孪生环境控制系统
爱吃糖的猫
python前端单片机djangostm32python
本文节选自我的博客:水果冷库环境控制系统作者简介:大家好,我是MilesChen,偏前端的全栈开发者。CSDN主页:爱吃糖的猫我的博客:爱吃糖的猫Github主页:MilesChen支持我:点赞+收藏⭐️+留言介绍:ThemixtureofWEB+DeepLearning+Iot+anything简介水果冷库环境控制系统是基于物联网、WEB、BIM的背景下实现对大型果品冷藏库无线监测与控制。传感器
- Nous Hermes 2:超越Mixtral 8x7B的MOE模型新高度
努力犯错
语言模型AI编程
引言随着人工智能技术的迅猛发展,开源大模型在近几年成为了AI领域的热点。最近,NousResearch公司发布了其基于Mixtral8x7B开发的新型大模型——NousHermes2,这一模型在多项基准测试中超越了Mixtral8x7BInstruct,标志着MOE(MixtureofExperts,专家混合模型)技术的新突破。Huggingface模型下载:https://huggingface
- GPT-3被超越?解读低能耗、高性能的GlaM模型
NLP论文解读
©原创作者|LJGLaM:EfficientScalingofLanguageModelswithMixture-of-Expertshttps://arxiv.org/pdf/2112.06905.pdf01摘要这是上个月谷歌刚刚在arxiv发布的论文,证明了一种能scaleGPT-3但又比较节省耗能的架构。GPT-3自问世以来在多项自然语言处理的任务上都有超强的表现。但是训练GPT-3这样庞大
- 经济学人每天5分钟10个单词 第七天
LongLongName
1.sulphurn.硫磺;硫v.使硫化;用硫磺处理;在...中加硫磺单词形态:形容词:sulphurousexamples:Gunpowderisamixtureofsulfhur,saltpeterandcharcoal.2.indicesn.目录,指数examples:Thissoftwarecanautomaticallygenerateindicesforarticles.3.robbe
- PBM模型学习(三)模型设置
Guanghui Yu
PBM模型学习学习CFDPBM模型
模型设置以气液为例标准ke模型,标准壁面函数PBM模型只能在mixture或者eulerian多相流模型中打开。设置液态水water为主相,空气为次相设置主次相的原则:主相为流体连续相,次相为气泡或者颗粒。Phenomenas现象设置:勾选AggregationKernel和BreakageKernel注意:只能在多相流模型打开前提下,才能进行操作对于多相流参考以下设置,一般操作密度设置为密度较小
- AI通用大模型 —— Pathways,MoE, etc.
人生简洁之道
DLLLMGeneralAI人工智能机器学习深度学习
文章目录Pathways现有AI缺憾PathwaysCanDoMultipleTasksMultipleSensesSparseandEfficientMixtureofExperts(MoE)NeuralComputation'1991,AdaptivemixturesoflocalexpertsICLR'17,OutrageouslyLargeNeuralNetworks:TheSparsel
- 快速玩转 Mixtral 8x7B MOE大模型!阿里云机器学习 PAI 推出最佳实践
阿里云大数据AI技术
阿里云机器学习云计算
作者:熊兮、贺弘、临在Mixtral8x7B大模型是MixtralAI推出的基于decoder-only架构的稀疏专家混合网络(Mixture-Of-Experts,MOE)开源大语言模型。这一模型具有46.7B的总参数量,对于每个token,路由器网络选择八组专家网络中的两组进行处理,并且将其输出累加组合,在增加模型参数总量的同时,优化了模型推理的成本。在大多数基准测试中,Mixtral8x7B
- 突破界限:首个国产DeepSeek MoE的高效表现
努力犯错
人工智能语言模型自然语言处理chatgptstablediffusion
前言在人工智能技术的快速发展过程中,国产首个开源MoE(MixtureofExperts)大模型——DeepSeekMoE的推出,不仅标志着中国在全球AI领域的重大突破,而且在计算效率和模型性能上展现了显著的优势。这款160亿参数的模型在保持与国际知名Llama2-7B模型相媲美的性能的同时,实现了显著的计算效率提升,计算量仅为对手的40%。模型特性与技术创新DeepSeekMoE模型的核心优势在
- DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models
步子哥
语言模型人工智能自然语言处理
Q:这篇论文试图解决什么问题?A:这篇论文旨在解决大型语言模型(LLMs)在扩展参数规模时面临的计算成本问题。具体来说,它提出了一种名为DeepSeekMoE的新型Mixture-of-Experts(MoE)架构,以实现专家的终极专业化。MoE架构通过将模型分解为多个专家,每个专家专注于特定任务,从而在保持参数规模的同时降低计算成本。然而,现有的MoE架构在确保专家专业化方面面临挑战,即每个专家
- 十分钟读完「超越GPT-3.5和LLama2的Mixtral 8x7B」论文
夕小瑶
自然语言处理人工智能神经网络深度学习大模型nlp
超越GPT-3.5和LLama2!专家混合模型Mixtral8x7B颠覆性表现震撼全球引言:Mixtral8x7B模型及其在多个基准测试中的表现在当今人工智能领域,语言模型的发展正以惊人的速度推进着自然语言处理技术的边界。最近,一个名为Mixtral8x7B的模型引起了广泛关注,它是一种基于稀疏混合专家(SparseMixtureofExperts,SMoE)的语言模型,以其在多个基准测试中的卓越
- sample 算子_Halcon算子解释 - osc_poeqd6cw的个人空间 - OSCHINA - 中文开源技术交流社区...
weixin_39791322
sample算子
Halcon算子解释大全Halcon/Visionpro视频教程和资料,请访问重码网,网址:http://www.211code.comChapter1:Classification1.1Gaussian-Mixture-Models1.add_sample_class_gmm功能:把一个训练样本添加到一个高斯混合模型的训练数据上。2.classify_class_gmm功能:通过一个高斯混合模型
- HALCON算子函数总结(上)
逆风路途
视觉
HALCON算子函数总结(上)**HALCON算子函数——Chapter1:Classification**Chapter_1_:Classification1.1Gaussian-Mixture-Models1.add_sample_class_gmm功能:把一个训练样本添加到一个高斯混合模型的训练数据上。2.classify_class_gmm功能:通过一个高斯混合模型来计算一个特征矢量的类。
- 不是 GPT4 用不起,而是本地运行 Mixtral-8x7B 更有性价比
xiangzhihong8
大数据与人工智能神经网络人工智能
当GPT4刚问世时,社区猜测它用了“多少亿个参数”才实现的如此惊人的性能。但事实证明,GPT4的创新不仅仅是“更多参数”。它本质上是8个GPT3.5模型一起工作。这些模型中的每一个都针对不同的任务(即“专家”)进行了调整。这称为“专家组合”(MixtureofExperts,缩写为MoE)。输入文本根据内容和所需任务会被分派给8个专家模型中的一个。然后,小组中的其他专家模型会评估结果,从而改进未来
- Mixtral 8X7B MoE模型基于阿里云人工智能平台PAI实践合集
阿里云大数据AI技术
阿里云人工智能云计算
作者:熊兮、贺弘、临在Mixtral8x7B大模型是MixtralAI推出的基于decoder-only架构的稀疏专家混合网络(Mixture-Of-Experts,MOE)开源大语言模型。这一模型具有46.7B的总参数量,对于每个token,路由器网络选择八组专家网络中的两组进行处理,并且将其输出累加组合,在增加模型参数总量的同时,优化了模型推理的成本。在大多数基准测试中,Mixtral8x7B
- 用通俗易懂的方式讲解大模型分布式训练并行技术:MOE并行
Python算法实战
大模型理论与实战大模型分布式langchain大模型多模态大语言模型大模型训练大模型部署
前面的文章中讲述了数据并行、流水线并行、张量并行、序列并行、自动并行等多种并行技术。但现在的模型越来越大,训练样本越来越多,每个样本都需要经过模型的全部计算,这就导致了训练成本的平方级增长。而当我们希望在牺牲极少的计算效率的情况下,把模型规模提升上百倍、千倍,通常就需要使用MOE(Mixture-of-Experts)并行。因此,本文接下来给大家分享MOE并行。码字不易,如果觉得我的文章能够能够给
- MoE模型性能还能更上一层楼?一次QLoRA微调实践
Baihai IDP
技术干货白海科技人工智能深度学习LLMAIMoE自然语言处理
Fine-TuningMixtral8x7BwithQLoRA:EnhancingModelPerformance编者按:最近,混合专家(MixtureofExperts,MoE)这种模型设计策略展现出了卓越的语言理解能力,如何在此基础上进一步提升MoE模型的性能成为业界热点。本文作者使用一种名为QLoRA的方法,通过量化和LoRA技术对MoE模型Mixtral-8x7B进行微调,以期大幅提高其性
- 使用PyTorch实现混合专家(MoE)模型
deephub
pytorch人工智能python深度学习混合专家模型
Mixtral8x7B的推出在开放AI领域引发了广泛关注,特别是混合专家(Mixture-of-Experts:MoEs)这一概念被大家所认知。混合专家(MoE)概念是协作智能的象征,体现了“整体大于部分之和”的说法。MoE模型汇集了各种专家模型的优势,以提供更好的预测。它是围绕一个门控网络和一组专家网络构建的,每个专家网络都擅长特定任务的不同方面在本文中,我将使用Pytorch来实现一个MoE模
- 论文系列之-Mixtral of Experts
Takoony
transformer深度学习人工智能
Q:这篇论文试图解决什么问题?A:这篇论文介绍了Mixtral8x7B,这是一个稀疏混合专家(SparseMixtureofExperts,SMoE)语言模型。它试图解决的主要问题包括:1.提高模型性能:通过使用稀疏混合专家结构,Mixtral在多个基准测试中超越或匹配了现有的大型模型(如Llama270B和GPT-3.5),尤其是在数学、代码生成和多语言理解任务上。2.控制计算成本:尽管模型拥有
- 系统性介绍MoE模型架构,以及在如今大模型方向的发展现状
zenRRan
知乎:Verlocksss编辑:马景锐链接:https://zhuanlan.zhihu.com/p/6752162811学习动机第一次了解到MoE(Mixtureofexperts),是在GPT-4模型架构泄漏事件,听说GPT-4的架构是8个GPT-3级别大小的模型以MoE架构(8*220B)组合成一个万亿参数级别的模型。不过在这之后开源社区并没有对MoE架构进行很多的探索,更多的工作还是聚焦在
- 超详细EM算法举例及推导
老实人小李
聚类算法聚类
最好先学习一下极大似然EM(Expectation-Maximum)算法也称期望最大化算法,曾入选“数据挖掘十大算法”中,可见EM算法在机器学习、数据挖掘中的影响力。EM算法是最常见的隐变量估计方法,在机器学习中有极为广泛的用途,例如常被用来学习高斯混合模型(Gaussianmixturemodel,简称GMM)的参数;隐式马尔科夫算法(HMM)、LDA主题模型的变分推断等等。EM算法是一种迭代优
- 【数据不完整?用EM算法填补缺失】期望值最大化 EM 算法:睹始知终
Debroon
算法
期望值最大化算法EM:睹始知终算法思想算法推导算法流程E步骤:期望M步骤:最大化陷入局部最优的原因算法应用高斯混合模型(GaussianMixtureModel,GMM)问题描述输入输出Python代码实现算法思想期望值最大化方法,是宇宙演变、物种进化背后的动力。如果一个公司在制定年终奖标准时,把每个员工一半的奖金和公司价值观挂钩,人们就会背诵创始人每个语录—整个公司都会自动迭代寻找最优解,每个人
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文