本资料首发于公众号【3D视觉工坊】,原文请见计算机视觉学习资料汇总,更多干货请关注公众号后台回复关键字获取~
学习网站
Linux中国:https://linux.cn/
鸟哥的linux私房菜:http://linux.vbird.org/
Linux公社:https://www.linuxidc.com/
学习书籍
《鸟哥的Linux私房菜》
《Linux命令行与shell脚本编程大全》
《Linux Shell脚本攻略》
《Linux命令行大全》
《Linux就该这么学》
《UNIX高级编程》
在公众号【3DCVer】后台回复“Linux”,即可获取完整PDF资料。
学习网站
OpenVim:https://link.zhihu.com/?target=http%3A//www.openvim.com/tutorial.html
Vim Adventures:https://link.zhihu.com/?target=http%3A//vim-adventures.com/
Vim详细教程:https://zhuanlan.zhihu.com/p/68111471
Interactive Vim tutorial:https://link.zhihu.com/?target=http%3A//www.openvim.com/
最详细的Vim编辑器指南:https://www.shiyanlou.com/questions/2721/
简明Vim教程:https://link.zhihu.com/?target=http%3A//coolshell.cn/articles/5426.html
Vim学习资源整理:https://link.zhihu.com/?target=https%3A//github.com/vim-china/hello-vim
学习书籍
《Mastering Vim》
《Modern Vim》
《Mastering Vim Quickly》
Git学习资源
Git官方文档:https://docs.gitlab.com/ee/README.html
Git-book:https://git-scm.com/book/zh/v2
Github超详细的Git学习资料:https://link.zhihu.com/?target=https%3A//github.com/xirong/my-git
Think like Git:http://think-like-a-git.net/
Atlassian Git Tutorial:https://link.zhihu.com/?target=https%3A//www.atlassian.com/git/tutorials
Git Workflows and Tutorials:
原文:
https://www.atlassian.com/git/tutorials/comparing-workflows
译文:
https://github.com/xirong/my-git/blob/master/git-workflow-tutorial.md
版本管理工具介绍–Git篇:
https://link.zhihu.com/?target=http%3A//www.imooc.com/learn/208
廖雪峰Git教程:
https://www.liaoxuefeng.com/wiki/896043488029600
学习书籍
《Git学习指南》
《Pro Git》
《Pro Git》中文版翻译:https://bingohuang.gitbooks.io/progit2/content/
《Git版本控制管理》
在公众号【3DCVer】,后台回复“Git”,即可获取完整PDF资料。
学习资源
Shell在线速查表:https://devhints.io/bash
Bash Guide for Beginners:
https://link.zhihu.com/?target=http%3A//www.tldp.org/LDP/Bash-Beginners-Guide/html/
Advanced Bash-Scripting Guide:
https://link.zhihu.com/?target=http%3A//www.tldp.org/LDP/abs/html/
学习书籍
Bash Notes For Professionals
《linux shell脚本攻略》
《LINUX与UNIX Shell编程指南》
在公众号【3DCVer】后台回复“Shell”,即可获取完整PDF资料。
学习视频
https://link.zhihu.com/?target=https%3A//www.youtube.com/playlist%3Flist%3DPLdfA2CrAqQ5kB8iSbm5FB1ADVdBeOzVqZ
GDB调试入门指南:
https://zhuanlan.zhihu.com/p/74897601
GDB Documentation:
http://www.gnu.org/software/gdb/documentation/
学习资源
Cmake-tutoria:
https://cmake.org/cmake-tutorial/
Learning-cmake:
https://github.com/Akagi201/learning-cmake
awesome-cmake(公司常用的培训资料):
https://github.com/onqtam/awesome-cmake
在公众号【3DCVer】后台回复“数学基础”,即可获取完整PDF资料。
学习书籍
在公众号【3DCVer】后台回复“数据结构与算法”,即可获取完整PDF资料。
学习视频
清华大学邓俊辉:https://www.bilibili.com/video/av49361421?from=search&seid=17039136986597710308
小甲鱼:https://www.bilibili.com/video/av29175690?from=search&seid=17039136986597710308
剑指offer数据结构与算法:https://www.bilibili.com/video/av64288683?from=search&seid=17039136986597710308
数据结构与算法C++实现:https://www.bilibili.com/video/av31763085?from=search&seid=17039136986597710308
《C++ Primer》
《C++ Primer Plus》
《深度探索C++对象模型》
《Effective C++》
《More Effective C++ 35个改善编程与设计的有效方法》
《C++标准库》
在公众号【3DCVer】后台回复“C++”,即可获取完整PDF资料。
《Python编程从入门到实践》
《Python高级编程》
《Python高性能编程》
《Python核心编程》
在公众号【3DCVer】后台回复“Python”,即可获取完整PDF资料。
《C语言程序设计》
《C Primer Plus》
《C和指针》
《C语言接口与实现》
《C/C++深层探索》
《Linux C编程一站式学习》
《C陷阱与缺陷》
《C语言参考手册》
在公众号【3DCVer】后台回复“C语言”,即可获取完整PDF资料。
《机器人ROS开发实践》
《ROS机器人编程:原理与应用》
《ROS机器人开发应用案例分析》
在公众号【3DCVer】后台回复“ROS”,即可获取完整PDF资料。
学习书籍
1、《Deep Learning》(深度学习花书,Ian Goodfellow,Yoshua Bengio著)
2、《深度学习之TensorFlow 入门、原理与进阶实战》
3、《深度学习之TensorFlow工程化项目实战》
4、《动手学深度学习》
在公众号【3DCVer】后台回复“深度学习”,即可获取完整PDF资料。
学习资源
深度学习500问:https://github.com/scutan90/DeepLearning-500-questions
awesome-deep-learning:https://github.com/ChristosChristofidis/awesome-deep-learning
awesome-deep-learning-papers:https://github.com/terryum/awesome-deep-learning-papers
Deep-Learning-Papers-Reading-Roadmap:https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap
MIT-deep-learning:https://github.com/lexfridman/mit-deep-learning
MIT Deep Learning Book:https://github.com/janishar/mit-deep-learning-book-pdf
Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials:
https://github.com/TarrySingh/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials
学习视频
1、吴恩达深度学习工程师全套课程(网易云课堂)
https://mooc.study.163.com/smartSpec/detail/1001319001.htm
2、斯坦福大学李飞飞
cs231n:
http://cs231n.stanford.edu/
3、李宏毅深度学习视频教程
https://www.bilibili.com/video/av48285039?from=search&seid=18275935807221968201
4、动手学深度学习(李沐)
http://zh.d2l.ai/chapter_preface/preface.html
5、深度学习框架Tensorflow学习与应用
https://www.bilibili.com/video/av20542427?from=search&seid=15215014902897800289
深度学习进阶知识
1、数据增强相关知识
数据增强的一些开源项目:
https://github.com/aleju/imgaug
https://github.com/mdbloice/Augmentor
https://github.com/google-research/uda
谷歌论文:https://arxiv.org/abs/1909.13719
2、目标检测网络的一些总结内容
Github链接:https://github.com/hoya012/deep_learning_object_detection
Github链接:https://github.com/abhineet123/Deep-Learning-for-Tracking-and-Detection
3、语义分割相关
https://link.zhihu.com/?target=https%3A//github.com/mrgloom/awesome-semantic-segmentation
Github链接:https://github.com/mrgloom/awesome-semantic-segmentation
4、图像检索
Github链接:
https://github.com/zhangqizky/awesome-cbir-papers
https://github.com/willard-yuan/awesome-cbir-papers
5、图像分类
https://github.com/zhangqizky/Image_Classification_with_5_methods
6、VAE相关知识点
Github链接:https://github.com/matthewvowels1/Awesome-VAEs
7、人体姿态估计
Github链接:https://github.com/wangzheallen/awesome-human-pose-estimation
8、目标跟踪
Github链接:https://github.com/czla/daily-paper-visual-tracking
多目标跟踪:
https://github.com/SpyderXu/multi-object-tracking-paper-list
9、异常检测
Github链接:https://github.com/yzhao062/anomaly-detection-resources
10、活体检测
Github链接:
https://github.com/SoftwareGift/FeatherNets_Face-Anti-spoofing-Attack-Detection-Challenge-CVPR2019
11、人群计数
Github链接:https://github.com/gjy3035/Awesome-Crowd-Counting
12、模型的压缩、加速和修建
模型的压缩和加速
Github链接:
https://github.com/memoiry/Awesome-model-compression-and-acceleration
https://github.com/cedrickchee/awesome-ml-model-compression
模型的修建:
Github链接:
https://github.com/he-y/Awesome-Pruning
13、行为识别和视频理解
Github链接:
https://github.com/jinwchoi/awesome-action-recognition
14、GAN相关资料
Github链接:
https://github.com/zhangqianhui/AdversarialNetsPapers
https://github.com/nightrome/really-awesome-gan
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/eriklindernoren/Keras-GAN
15、图像和视频超分辨率
图像超分辨率Github链接:
https://github.com/ChaofWang/Awesome-Super-Resolution
https://github.com/YapengTian/Single-Image-Super-Resolution
https://github.com/ptkin/Awesome-Super-Resolution
视频超分辨率链接:
https://github.com/LoSealL/VideoSuperResolution
16、人脸landmark3D
Github链接:
https://github.com/mrgloom/Face-landmarks-detection-benchmark
https://github.com/D-X-Y/landmark-detection
https://github.com/ChanChiChoi/awesome-Face_Recognition
17、面部表情识别
Github链接:
https://github.com/amusi/Deep-Learning-Interview-Book/blob/master/docs/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0.md
18、场景识别
Github链接:
https://github.com/CSAILVision/places365
https://github.com/chenyuntc/scene-baseline
https://github.com/foamliu/Scene-Classification
19、深度学习在推荐系统中的应用
Github链接:
https://github.com/robi56/Deep-Learning-for-Recommendation-Systems
20、强化学习资料
Github链接:
https://github.com/wwxFromTju/awesome-reinforcement-learning-zh
框架
Autokeras:
https://github.com/keras-team/autokeras
学习资源
Awesome-AutoML-papers(超全):
https://github.com/hibayesian/awesome-automl-papers
Tensorflow中文官方文档:https://github.com/jikexueyuanwiki/tensorflow-zh
Tensorflow2.0 tutorials:https://github.com/czy36mengfei/tensorflow2_tutorials_chinese
awesome-tensorflow:https://github.com/jtoy/awesome-tensorflow
图解Tensorflow源码:https://github.com/yao62995/tensorflow
caffe2_cpp_tutorial:https://github.com/leonardvandriel/caffe2_cpp_tutorial
Caffe使用教程:https://github.com/shicai/Caffe_Manual
Awesome-Caffe:https://github.com/MichaelXin/Awesome-Caffe
Keras中文文档:https://keras.io/zh/
Pytorch-tutorial:https://github.com/yunjey/pytorch-tutorial
pytorch-handbook:https://github.com/zergtant/pytorch-handbook
Awesome-pytorch-list:https://github.com/bharathgs/Awesome-pytorch-list
Tutorial:https://mxnet.incubator.apache.org/api
Netron:https://github.com/lutzroeder/netron
NN-SVG:https://github.com/zfrenchee
PlotNeuralNet:https://github.com/HarisIqbal88/PlotNeuralNet
ConvNetDraw:https://cbovar.github.io/ConvNetDraw/
Draw_Convnet:https://github.com/gwding/draw_convnet
Netscope:https://link.zhihu.com/?target=https%3A//github.com/ethereon/netscope
学习书籍
机器学习(周志华)
统计学习方法(李航)
PRML模式识别与机器学习(马春鹏)
机器学习实战
机器学习系统设计
分布式机器学习:算法、理论与实践
机器学习中的数学
Machine Learning - A Probabilistic Perspective
百面机器学习
美团机器学习实践
在公众号【3DCVer】后台回复“机器学习”,即可获取完整PDF资料。
学习资源
AILearning:https://github.com/apachecn/AiLearning
awesome-machine-learning:https://github.com/josephmisiti/awesome-machine-learning
awesome-machine-learning:https://github.com/jobbole/awesome-machine-learning-cn
machine-learning-for-software-engineers:https://github.com/ZuzooVn/machine-learning-for-software-engineers
Machine Learning & Deep Learning Tutorials:https://github.com/ujjwalkarn/Machine-Learning-Tutorials
homemade-machine-learning:https://github.com/trekhleb/homemade-machine-learning
3D-Machine-Learning(非常有价值):https://github.com/timzhang642/3D-Machine-Learning
学习视频
1、吴恩达CS229: Machine Learning (机器学习视频)
视频链接:http://cs229.stanford.edu/
2、斯坦福大学机器学习视频
视频链接:https://www.coursera.org/learn/machine-learning
3、李宏毅机器学习视频
视频下载链接:https://www.bilibili.com/video/av59538266(这是B站上的在线视频)
百度云盘:
链接: https://pan.baidu.com/s/1HdVdx52MZ-FF5dSWpAOfeA
提取码: vjhy
4、Google机器学习
Github链接:https://github.com/yuanxiaosc/Google-Machine-learning-crash-course
学习书籍
《Computer Vision Models,Learning and Inference》
《Computer Vision Algorithms and Applications》
《Machine Vision Algorithms and Applications》
《Linear Algebra for Computer Vision》
《An Invitation to 3-D Vision: From Images to Geometric Models》
《计算机视觉中的多视图几何》
《Computer Vision for Visual Effects》
《Mastering OpenCV with Practical Computer Vision Projects》
《OpenCV3计算机视觉:Python语言实现》
《Practical OpenCV》
《OpenCV 3.0 Computer Vision with Java》
在公众号【3DCVer】后台回复“计算机视觉”,即可获取完整PDF资料。
学习课程
计算机视觉博士课程:
https://github.com/hassony2/useful-computer-vision-phd-resources
81页计算机视觉学习指南:
https://www.pyimagesearch.com/start-here/
Deep Learning(Advanced Computer Vision):
https://www.udemy.com/course/advanced-computer-vision/
学习视频
1、 百度Apollo系列教程
视频链接:
http://bit.baidu.com/subject/index/id/16.html
2、(MIT自动驾驶课程)MIT 6.S094: Deep Learning for Self-Driving Cars
视频链接:
https://selfdrivingcars.mit.edu/
3、国外教程自动驾驶汽车专项课程
课程:
https://www.coursera.org/specializations/self-driving-cars
笔记:
https://github.com/qiaoxu123/Self-Driving-Cars
文档:
https://qiaoxu123.github.io/Self-Driving-Cars/#/
方向汇总
机动车/非机动车/行人的检测、跟踪与捕获
各种车辆特征等结构化信息提取
各类驾驶行为的分析
违章事件的检出,交通数据的采集
车辆/行人检测与跟踪
道路分割与识别
车道线检测
场景分割
场景识别
自动泊车
障碍物的识别
车道偏离报警
交通标志的识别
车载视频雷达(激光、毫米波、超声波)多源信号融合技术
版面分析
文本行/串检测
单字/字符串识别
语义分析
结构化信息提取
AI芯片
深度学习的分布和并行处理系统
论文汇总
1、 单目图像中的3D物体检测
1.YOLO3D
2.SSD-6D
3.3D Bounding Box Estimation Using Deep Learning and Geometry
4.GS3D:An Effcient 3D Object Detection Framework for Autonomous Driving
5.Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image
6.Task-Aware Monocular Depth Estimation for 3D Object Detection
7.M3D-RPN: Monocular 3D Region Proposal Network for Object Detection
8.Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud
9.Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss
10.Disentangling Monocular 3D Object Detection
11.Shift R-CNN: Deep Monocular 3d Object Detection With Closed-Form Geometric Constraints
12.Monocular 3D Object Detection via Geometric Reasoning on Keypoints
13.Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction
14.Accurate Monocular Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving
15.3D Bounding Boxes for Road Vehicles: A One-Stage, Localization Prioritized Approach using Single Monocular Images
16.Orthographic Feature Transform for Monocular 3D Object Detection
17.Multi-Level Fusion based 3D Object Detection from Monocular Images
18.MonoGRNet:A Geometric Reasoning Network for Monocular 3D Object Localization
19.Mono3D++: Monocular 3D Vehicle Detection with Two-Scale 3D Hypotheses and Task Priors
2、 基于激光雷达点云的3D物体检测
1.VoteNet
2.End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds
3.Deep Hough Voting for 3D Object Detection in Point Clouds
4.STD: Sparse-to-Dense 3D Object Detector for Point Cloud
5.PointPillars: Fast Encoders for Object Detection from Point Clouds
6.PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
7.PIXOR: Real-time 3D Object Detection from Point Clouds
8.Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection on Point Clouds
9.YOLO3D: End-to-end real-time 3D Oriented Object Bounding Box Detection from LiDAR Point Cloud
10.Vehicle Detection from 3D Lidar Using FCN(百度早期工作2016年)
11.Object Detection and Classification in Occupancy Grid Maps using Deep Convolutional Networks
12.RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving
13.BirdNet: a 3D Object Detection Framework from LiDAR information
14.IPOD: Intensive Point-based Object Detector for Point Cloud
15.PIXOR: Real-time 3D Object Detection from Point Clouds
16.DepthCN: Vehicle Detection Using 3D-LIDAR and ConvNet
17.YOLO4D: A ST Approach for RT Multi-object Detection and Classification from LiDAR Point Clouds
18.PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
19.Part-A^2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud
20.Voxel-FPN: multi-scale voxel feature aggregation in 3D object detection from point clouds
21.Fast Point RCNN
22.StarNet: Targeted Computation for Object Detection in Point Clouds
23.Class-balanced Grouping and Sampling for Point Cloud 3D Object Detection
24.LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving
3、 基于RGB-D图像的3D物体检测
1.Frustum PointNets for 3D Object Detection from RGB-D Data
2.Frustum VoxNet for 3D object detection from RGB-D or Depth images
4、 基于融合方法的3D物体检测(RGB图像+激光雷达/深度图)
1.AVOD
2.A General Pipeline for 3D Detection of Vehicles
3.Adaptive and Azimuth-Aware Fusion Network of Multimodal Local Features for 3D Object Detection
4.Deep Continuous Fusion for Multi-Sensor 3D Object Detection
5.Frustum PointNets for 3D Object Detection from RGB-D Data
6.Joint 3D Proposal Generation and Object Detection from View Aggregation
7.Multi-Task Multi-Sensor Fusion for 3D Object Detection
8.Multi-View 3D Object Detection Network for Autonomous Driving
9.PointFusion:Deep Sensor Fusion for 3D Bounding Box Estimation
10.Pseudo-LiDAR from Visual Depth Estimation:Bridging the Gap in 3D Object Detection for Autonomous Driving
5、 基于双目视觉下的3D物体检测
1.Object-Centric Stereo Matching for 3D Object Detection
2.Triangulation Learning Network: from Monocular to Stereo 3D Object Detection
3.Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving
4.Stereo R-CNN based 3D Object Detection for Autonomous Driving
6、单目图像深度图生成
1.Deep Ordinal Regression Network for Monocular Depth Estimation
2.Depth from Videos in the Wild: Unsupervised Monocular Depth Learning from Unknown Cameras
3.Detail Preserving Depth Estimation from a Single Image Using Attention Guided Networks
4.FastDepth: Fast Monocular Depth Estimation on Embedded Systems
5.Single View Stereo Matching
7、单目图像+激光雷达点云深度图生成
1.Sparse and noisy LiDAR completion with RGB guidance and uncertainty
2.Learning Guided Convolutional Network for Depth Completion
3.DFineNet: Ego-Motion Estimation and Depth Refinement from Sparse, Noisy Depth Input with RGB Guidance
8、深度图补全
1.Deep RGB-D Canonical Correlation Analysis For Sparse Depth Completion
2.Sparse and noisy LiDAR completion with RGB guidance and uncertainty
3.Confidence Propagation through CNNs for Guided Sparse Depth Regression
4.Learning Guided Convolutional Network for Depth Completion
5.DFineNet: Ego-Motion Estimation and Depth Refinement from Sparse, Noisy Depth Input with RGB Guidance
6.Depth Completion from Sparse LiDAR Data with Depth-Normal Constraints
学习书籍
1.Computer Vision for Visual Effects
2.Computer Vision Algorithms and Applications
相关论文
1.Rolling Shutter Pose and Ego-motion Estimation using Shape-from-Template(ECCV2018)
2.BundleFusion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration(ACM)
3.Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
4.3D-R2N2:A Unified Approach for Single and Multi-view 3D Object Reconstruction 5.Pixel2Mesh:Generating 3D Mesh Models form Single RGB Images
6.Mesh R-CNN(FAIR,CVPR2019)
7.Conditional Single-view Shape Generation for Multi-view Stereo Reconstruction
8.R-MVSNet: Recurrent MVSNet for High-resolution Multi-view Stereo Depth Inference
9.StereoDRNet: Dilated Residual Stereo Net(cvpr2019)
一些开源网站
1、MVE
网站链接:
https://www.gcc.tu-darmstadt.de/home/proj/mve/index.en.jsp
2、Bundler
网站链接:
http://www.cs.cornell.edu/~snavely/bundler/
3、VisualSFM
网站链接:
https://link.zhihu.com/?target=http%3A//ccwu.me/vsfm/
4、OpenMVG
网站链接:
https://openmvg.readthedocs.io/en/latest/software/SfM/SfM/
5、ColMap
网站链接:
https://link.zhihu.com/?target=https%3A//demuc.de/colmap/
相关资源网站
1、非常全面的三维重建相关资源列表,涵盖SLAM,SFM,MVS
https://github.com/openMVG/awesome_3DReconstruction_list
学习书籍
《视觉测量》(张广军版)
《multiview geometry in computer vision》
在公众号【3DCVer】后台回复“立体视觉”,即可获取完整PDF资料。
学习课程
CS231A: Computer Vision, From 3D Reconstruction to Recognition:
http://web.stanford.edu/class/cs231a/
学习书籍
《光栅投影三维精密测量》
《基于多视图的三维结构重建》
开源项目
3d reconstruction using three step phase shift:
https://github.com/phreax/structured_light
A framework for Structured Light based 3D scanning projects:
https://github.com/nikolaseu/neuvision
awesome_3DReconstruction_list:
https://github.com/openMVG/awesome_3DReconstruction_list
SLAM大佬网站
1、跟踪SLAM前沿动态论文,更新的很频繁
https://github.com/YiChenCityU/Recent_SLAM_Research
2、很全视觉slam资料大全
https://github.com/tzutalin/awesome-visual-slam
3、开源SLAM列表
https://github.com/OpenSLAM/awesome-SLAM-list
4、很全面的SLAM教程
https://link.zhihu.com/?target=https%3A//github.com/kanster/awesome-slam
5、非常全面的三维重建相关资源列表,涵盖SLAM,SFM,MVS
https://github.com/openMVG/awesome_3DReconstruction_list
6、很全的RGBD SLAM开源方案介绍
https://github.com/electech6/owesome-RGBD-SLAM
7、非常全面的相机总结,包括论文,设备厂商,算法,应用等
https://github.com/uzh-rpg/event-based_vision_resources
8、SLAM 学习与开发经验分享
https://github.com/GeekLiB/Lee-SLAM-source
9、中文注释版ORB-SLAM2
https://github.com/Vincentqyw/ORB-SLAM2-CHINESE
10、语义SLAM相关资料
https://zhuanlan.zhihu.com/p/64825421
SLAM相关的工具和库
基础工具:Eigen、OpenCV、PCL、ROS
后端优化的库:g2o、GTSAM、Ceres solver
SLAM相关开源代码
1、MonoSLAM
Github地址:
https://github.com/hanmekim/SceneLib2
2、PTAM
Github地址:
https://www.robots.ox.ac.uk/~gk/PTAM/
3、ORB-SLAM
Github地址:
http://webdiis.unizar.es/~raulmur/orbslam/
4、LSD-SLAM
Github地址:
https://vision.in.tum.de/research/vslam/lsdslam
5、SVO
Github地址:
https://github.com/OpenSLAM/awesome-SLAM-list
6、DTAM
Github地址:
https://github.com/anuranbaka/OpenDTAM
7、DVO
Github地址:
https://github.com/tum-vision/dvo_slam
8、DSO
Github地址:
https://github.com/JakobEngel/dso
9、RTAB-MAP
Github地址:
https://github.com/introlab/rtabmap
10、RGBD-SLAM-V2
Github地址:
https://github.com/felixendres/rgbdslam_v2
11、Elastic Fusion
Github地址:
https://github.com/mp3guy/ElasticFusion
12、Hector SLAM
Github地址:
https://wiki.ros.org/hector_slam
13、GMapping
Github地址:
https://wiki.ros.org/gmapping
14、OKVIS
Github地址:
https://github.com/ethz-asl/okvis
15、ROVIO
Github地址:
https://github.com/ethz-asl/rovio
16、COSLAM
Github地址:
http://drone.sjtu.edu.cn/dpzou/project/coslam.php
17、DTSLAM
Github地址:https://github.com/plumonito/dtslam
18、REBVO
Github地址:
https://github.com/JuanTarrio/rebvo
SLAM相关数据集
SLAM学习书籍
《概率机器人》
《视觉SLAM十四讲》
《计算机视觉中的多视图几何》
《机器人学中的状态估计》
《Principles of Robot Motion Theory,Algorithms and Implementation》