Note:
Click here to download the full example code
Author: Lingfan Yu, Mufei Li, Zheng Zhang
在本教程中,您将学习如何实现关系图卷积网络(R-GCN)。这种类型的网络是一种通用化GCN的工作,旨在处理知识库中实体之间的不同关系。要了解有关R-GCN背后的研究的更多信息,请参阅使用图卷积网络对关系数据建模。
简单的图卷积网络(GCN)和 DGL教程)利用数据集的结构信息(即图连接性)来改善节点表示的提取。图的边缘保留为未键入。
知识图由主题,关系,对象形式的三元组集合组成。因此,边缘对重要信息进行编码,并具有自己的嵌入要学习。此外,在任何给定对之间可能存在多个边缘。
在统计关系学习(SRL)中,有两个基本任务:
R-GCN使用通用图卷积网络解决了这两个问题。它使用多边缘编码进行了扩展,以计算实体的嵌入,但是具有不同的下游处理。
本教程重点介绍第一个任务,即实体分类,以展示如何生成实体表示。 在DGL Github存储库中可以找到这两项任务的完整代码。
回想一下,在GCN中,每个节点的隐藏表示 i i i 在$ (l+1)^{th} $层的计算方法是:
h i l + 1 = σ ( ∑ j ∈ N i 1 c i W ( l ) h j ( l ) ) ( 1 ) h_i^{l+1} = \sigma\left(\sum_{j\in N_i}\frac{1}{c_i} W^{(l)} h_j^{(l)}\right)~~~~~~~~~~(1) hil+1=σ⎝⎛j∈Ni∑ci1W(l)hj(l)⎠⎞ (1)
哪里 c i ci ci 是归一化常数。
R-GCN和GCN之间的主要区别在于,在R-GCN中,边缘可以表示不同的关系。在GCN中,重量 W ( l ) W^{(l)} W(l) 在等式中 (1) 由图层中的所有边共享 l l l。相反,在R-GCN中,不同的边类型使用不同的权重,并且只有相同关系类型的边r 具有相同的投影权重 W r ( l ) W_r^{(l)} Wr(l)。
所以实体中的隐藏表示 ( l + 1 ) t h (l+1)^{th} (l+1)th R-GCN中的层可以用以下公式表示:
h i l + 1 = σ ( W 0 ( l ) h i ( l ) + ∑ r ∈ R ∑ j ∈ N i r 1 c i , r W r ( l ) h j ( l ) ) ( 2 ) h_i^{l+1} = \sigma\left(W_0^{(l)}h_i^{(l)}+\sum_{r\in R}\sum_{j\in N_i^r}\frac{1}{c_{i,r}}W_r^{(l)}h_j^{(l)}\right)~~~~~~~~~~(2) hil+1=σ⎝⎛W0(l)hi(l)+r∈R∑j∈Nir∑ci,r1Wr(l)hj(l)⎠⎞ (2)
哪里 N i r N_i^r Nir 表示节点的邻居索引集 i i i 根据关系 r ∈ R r\in R r∈R和 c i , r c_{i,r} ci,r是归一化常数。在实体分类中,R-GCN论文使用 c i , r = ∣ N i r ∣ c_{i,r}=|N_i^r| ci,r=∣Nir∣。
直接应用上述方程式的问题是参数数量的快速增长,尤其是在具有高度多元关系的数据的情况下。为了减小模型参数的大小并防止过度拟合,原始论文提出使用基分解。
W r ( l ) = ∑ b = 1 B a r b ( l ) V b ( l ) ( 3 ) W_r^{(l)}=\sum\limits_{b=1}^B a_{rb}^{(l)}V_b^{(l)}~~~~~~~~~~(3) Wr(l)=b=1∑Barb(l)Vb(l) (3)
因此,重量 W r ( l ) W_r^{(l)} Wr(l) 是基础变换的线性组合 V b ( l ) V_b^{(l)} Vb(l)带有系数 a r b ( l ) a_{rb}^{(l)} arb(l)。基地数 B B B 比知识库中的关系数小得多。
注意
在链路预测中实现另一权重正则化,块分解。
R-GCN模型由几个R-GCN层组成。第一R-GCN层还用作输入层,并接受与节点实体相关联并投影到隐藏空间的要素(例如,描述文本)。在本教程中,我们仅将实体ID用作实体功能。
对于每个节点,R-GCN层执行以下步骤:
以下代码是R-GCN隐藏层的定义。
注意
每种关系类型都具有不同的权重。因此,权重矩阵具有三个维度:关系,input_feature,output_feature。
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
import dgl.function as fn
from functools import partial
class RGCNLayer(nn.Module):
def __init__(self, in_feat, out_feat, num_rels, num_bases=-1, bias=None,
activation=None, is_input_layer=False):
super(RGCNLayer, self).__init__()
self.in_feat = in_feat
self.out_feat = out_feat
self.num_rels = num_rels
self.num_bases = num_bases
self.bias = bias
self.activation = activation
self.is_input_layer = is_input_layer
# sanity check
if self.num_bases <= 0 or self.num_bases > self.num_rels:
self.num_bases = self.num_rels
# weight bases in equation (3)
self.weight = nn.Parameter(torch.Tensor(self.num_bases, self.in_feat,
self.out_feat))
if self.num_bases < self.num_rels:
# linear combination coefficients in equation (3)
self.w_comp = nn.Parameter(torch.Tensor(self.num_rels, self.num_bases))
# add bias
if self.bias:
self.bias = nn.Parameter(torch.Tensor(out_feat))
# init trainable parameters
nn.init.xavier_uniform_(self.weight,
gain=nn.init.calculate_gain('relu'))
if self.num_bases < self.num_rels:
nn.init.xavier_uniform_(self.w_comp,
gain=nn.init.calculate_gain('relu'))
if self.bias:
nn.init.xavier_uniform_(self.bias,
gain=nn.init.calculate_gain('relu'))
def forward(self, g):
if self.num_bases < self.num_rels:
# generate all weights from bases (equation (3))
weight = self.weight.view(self.in_feat, self.num_bases, self.out_feat)
weight = torch.matmul(self.w_comp, weight).view(self.num_rels,
self.in_feat, self.out_feat)
else:
weight = self.weight
if self.is_input_layer:
def message_func(edges):
# for input layer, matrix multiply can be converted to be
# an embedding lookup using source node id
embed = weight.view(-1, self.out_feat)
index = edges.data['rel_type'] * self.in_feat + edges.src['id']
return {'msg': embed[index] * edges.data['norm']}
else:
def message_func(edges):
w = weight[edges.data['rel_type']]
msg = torch.bmm(edges.src['h'].unsqueeze(1), w).squeeze()
msg = msg * edges.data['norm']
return {'msg': msg}
def apply_func(nodes):
h = nodes.data['h']
if self.bias:
h = h + self.bias
if self.activation:
h = self.activation(h)
return {'h': h}
g.update_all(message_func, fn.sum(msg='msg', out='h'), apply_func)
class Model(nn.Module):
def __init__(self, num_nodes, h_dim, out_dim, num_rels,
num_bases=-1, num_hidden_layers=1):
super(Model, self).__init__()
self.num_nodes = num_nodes
self.h_dim = h_dim
self.out_dim = out_dim
self.num_rels = num_rels
self.num_bases = num_bases
self.num_hidden_layers = num_hidden_layers
# create rgcn layers
self.build_model()
# create initial features
self.features = self.create_features()
def build_model(self):
self.layers = nn.ModuleList()
# input to hidden
i2h = self.build_input_layer()
self.layers.append(i2h)
# hidden to hidden
for _ in range(self.num_hidden_layers):
h2h = self.build_hidden_layer()
self.layers.append(h2h)
# hidden to output
h2o = self.build_output_layer()
self.layers.append(h2o)
# initialize feature for each node
def create_features(self):
features = torch.arange(self.num_nodes)
return features
def build_input_layer(self):
return RGCNLayer(self.num_nodes, self.h_dim, self.num_rels, self.num_bases,
activation=F.relu, is_input_layer=True)
def build_hidden_layer(self):
return RGCNLayer(self.h_dim, self.h_dim, self.num_rels, self.num_bases,
activation=F.relu)
def build_output_layer(self):
return RGCNLayer(self.h_dim, self.out_dim, self.num_rels, self.num_bases,
activation=partial(F.softmax, dim=1))
def forward(self, g):
if self.features is not None:
g.ndata['id'] = self.features
for layer in self.layers:
layer(g)
return g.ndata.pop('h')
本教程使用R-GCN论文中的应用信息学和形式描述方法研究所(AIFB)数据集。
# load graph data
from dgl.contrib.data import load_data
import numpy as np
data = load_data(dataset='aifb')
num_nodes = data.num_nodes
num_rels = data.num_rels
num_classes = data.num_classes
labels = data.labels
train_idx = data.train_idx
# split training and validation set
val_idx = train_idx[:len(train_idx) // 5]
train_idx = train_idx[len(train_idx) // 5:]
# edge type and normalization factor
edge_type = torch.from_numpy(data.edge_type)
edge_norm = torch.from_numpy(data.edge_norm).unsqueeze(1)
labels = torch.from_numpy(labels).view(-1)
out:
Loading dataset aifb
Number of nodes: 8285
Number of edges: 66371
Number of relations: 91
Number of classes: 4
removing nodes that are more than 3 hops away
# configurations
n_hidden = 16 # number of hidden units
n_bases = -1 # use number of relations as number of bases
n_hidden_layers = 0 # use 1 input layer, 1 output layer, no hidden layer
n_epochs = 25 # epochs to train
lr = 0.01 # learning rate
l2norm = 0 # L2 norm coefficient
# create graph
g = DGLGraph()
g.add_nodes(num_nodes)
g.add_edges(data.edge_src, data.edge_dst)
g.edata.update({'rel_type': edge_type, 'norm': edge_norm})
# create model
model = Model(len(g),
n_hidden,
num_classes,
num_rels,
num_bases=n_bases,
num_hidden_layers=n_hidden_layers)
# optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2norm)
print("start training...")
model.train()
for epoch in range(n_epochs):
optimizer.zero_grad()
logits = model.forward(g)
loss = F.cross_entropy(logits[train_idx], labels[train_idx])
loss.backward()
optimizer.step()
train_acc = torch.sum(logits[train_idx].argmax(dim=1) == labels[train_idx])
train_acc = train_acc.item() / len(train_idx)
val_loss = F.cross_entropy(logits[val_idx], labels[val_idx])
val_acc = torch.sum(logits[val_idx].argmax(dim=1) == labels[val_idx])
val_acc = val_acc.item() / len(val_idx)
print("Epoch {:05d} | ".format(epoch) +
"Train Accuracy: {:.4f} | Train Loss: {:.4f} | ".format(
train_acc, loss.item()) +
"Validation Accuracy: {:.4f} | Validation loss: {:.4f}".format(
val_acc, val_loss.item()))
out:
start training...
Epoch 00000 | Train Accuracy: 0.1696 | Train Loss: 1.3865 | Validation Accuracy: 0.2500 | Validation loss: 1.3862
Epoch 00001 | Train Accuracy: 0.9196 | Train Loss: 1.3434 | Validation Accuracy: 0.9286 | Validation loss: 1.3574
Epoch 00002 | Train Accuracy: 0.9286 | Train Loss: 1.2764 | Validation Accuracy: 0.9643 | Validation loss: 1.3140
Epoch 00003 | Train Accuracy: 0.9286 | Train Loss: 1.1893 | Validation Accuracy: 1.0000 | Validation loss: 1.2546
Epoch 00004 | Train Accuracy: 0.9286 | Train Loss: 1.0996 | Validation Accuracy: 1.0000 | Validation loss: 1.1837
Epoch 00005 | Train Accuracy: 0.9286 | Train Loss: 1.0229 | Validation Accuracy: 1.0000 | Validation loss: 1.1083
Epoch 00006 | Train Accuracy: 0.9464 | Train Loss: 0.9611 | Validation Accuracy: 1.0000 | Validation loss: 1.0355
Epoch 00007 | Train Accuracy: 0.9464 | Train Loss: 0.9116 | Validation Accuracy: 0.9643 | Validation loss: 0.9708
Epoch 00008 | Train Accuracy: 0.9554 | Train Loss: 0.8726 | Validation Accuracy: 0.9643 | Validation loss: 0.9181
Epoch 00009 | Train Accuracy: 0.9643 | Train Loss: 0.8429 | Validation Accuracy: 0.9643 | Validation loss: 0.8785
Epoch 00010 | Train Accuracy: 0.9643 | Train Loss: 0.8213 | Validation Accuracy: 0.9643 | Validation loss: 0.8503
Epoch 00011 | Train Accuracy: 0.9643 | Train Loss: 0.8062 | Validation Accuracy: 0.9643 | Validation loss: 0.8308
Epoch 00012 | Train Accuracy: 0.9643 | Train Loss: 0.7954 | Validation Accuracy: 0.9643 | Validation loss: 0.8175
Epoch 00013 | Train Accuracy: 0.9643 | Train Loss: 0.7875 | Validation Accuracy: 0.9643 | Validation loss: 0.8085
Epoch 00014 | Train Accuracy: 0.9732 | Train Loss: 0.7813 | Validation Accuracy: 0.9643 | Validation loss: 0.8024
Epoch 00015 | Train Accuracy: 0.9732 | Train Loss: 0.7764 | Validation Accuracy: 0.9643 | Validation loss: 0.7983
Epoch 00016 | Train Accuracy: 0.9732 | Train Loss: 0.7726 | Validation Accuracy: 0.9643 | Validation loss: 0.7956
Epoch 00017 | Train Accuracy: 0.9821 | Train Loss: 0.7695 | Validation Accuracy: 0.9643 | Validation loss: 0.7940
Epoch 00018 | Train Accuracy: 0.9821 | Train Loss: 0.7671 | Validation Accuracy: 0.9643 | Validation loss: 0.7933
Epoch 00019 | Train Accuracy: 0.9821 | Train Loss: 0.7650 | Validation Accuracy: 0.9643 | Validation loss: 0.7932
Epoch 00020 | Train Accuracy: 0.9821 | Train Loss: 0.7633 | Validation Accuracy: 0.9643 | Validation loss: 0.7937
Epoch 00021 | Train Accuracy: 0.9821 | Train Loss: 0.7617 | Validation Accuracy: 0.9643 | Validation loss: 0.7947
Epoch 00022 | Train Accuracy: 0.9821 | Train Loss: 0.7601 | Validation Accuracy: 0.9643 | Validation loss: 0.7963
Epoch 00023 | Train Accuracy: 0.9821 | Train Loss: 0.7585 | Validation Accuracy: 0.9643 | Validation loss: 0.7983
Epoch 00024 | Train Accuracy: 0.9821 | Train Loss: 0.7568 | Validation Accuracy: 0.9643 | Validation loss: 0.8007
到目前为止,您已经了解了如何使用DGL通过R-GCN模型实现实体分类。在知识库设置中,R-GCN生成的表示可用于发现节点之间的潜在关系。在R-GCN论文中,作者将R-GCN生成的实体表示提供给DistMult预测模型,以预测可能的关系。
该实现与此处介绍的实现类似,但在R-GCN层之上堆叠了一个额外的DistMult层。您可以在我们的` Github Python代码示例中找到使用R-GCN进行链接预测的完整实现。
< https://github.com/dmlc/dgl/blob/master/examples/pytorch/rgcn/link_predict.py >`_。
脚本的总运行时间:(0分钟6.505秒)
下载脚本:4_rgcn.py
下载脚本:4_rgcn.ipynb