表引擎在ClickHouse中的作用十分关键,直接决定了数据如何存储和读取、是否支持并发读写、是否支持index、支持的query种类、是否支持主备复制等。
ClickHouse提供了大约28种表引擎,各有各的用途,比如有Lo
系列用来做小表数据分析,MergeTree
系列用来做大数据量分析,而Integration
系列则多用于外表数据集成。再考虑复制表Replicated
系列,分布式表Distributed
等,纷繁复杂,新用户上手选择时常常感到迷惑。
本文尝试对ClickHouse的表引擎进行梳理,帮忙大家快速入门ClickHouse。
下图是ClickHouse提供的所有表引擎汇总。
一共分为四个系列,分别是Log、MergeTree、Integration、Special。其中包含了两种特殊的表引擎Replicated、Distributed,功能上与其他表引擎正交,我们后续会单独写一篇文章来介绍。
Log系列表引擎功能相对简单,主要用于快速写入小表(1百万行左右的表),然后全部读出的场景。
几种Log表引擎的共性是:
它们彼此之间的区别是:
TinyLog:不支持并发读取数据文件,查询性能较差;格式简单,适合用来暂存中间数据;
StripLog:支持并发读取数据文件,查询性能比TinyLog好;将所有列存储在同一个大文件中,减少了文件个数;
Log:支持并发读取数据文件,查询性能比TinyLog好;每个列会单独存储在一个独立文件中。
该系统表引擎主要用于将外部数据导入到ClickHouse中,或者在ClickHouse中直接操作外部数据源。
Kafka:将Kafka Topic中的数据直接导入到ClickHouse;
MySQL:将Mysql作为存储引擎,直接在ClickHouse中对MySQL表进行select等操作;
JDBC/ODBC:通过指定jdbc、odbc连接串读取数据源;
HDFS:直接读取HDFS上的特定格式的数据文件;
Special系列的表引擎,大多是为了特定场景而定制的。这里也挑选几个简单介绍,不做详述。
Memory:将数据存储在内存中,重启后会导致数据丢失。查询性能极好,适合于对于数据持久性没有要求的1亿一下的小表。在ClickHouse中,通常用来做临时表。
Buffer:为目标表设置一个内存buffer,当buffer达到了一定条件之后会flush到磁盘。
File:直接将本地文件作为数据存储;
Null:写入数据被丢弃、读取数据为空;
Log、Special、Integration主要用于特殊用途,场景相对有限。MergeTree系列才是官方主推的存储引擎,支持几乎所有ClickHouse核心功能。
以下重点介绍MergeTree、ReplacingMergeTree、CollapsingMergeTree、VersionedCollapsingMergeTree、SummingMergeTree、AggregatingMergeTree引擎。
MergeTree表引擎主要用于海量数据分析,支持数据分区、存储有序、主键索引、稀疏索引、数据TTL等。MergeTree支持所有ClickHouse SQL语法,但是有些功能与MySQL并不一致,比如在MergeTree中主键并不用于去重,以下通过示例说明。
如下建表DDL所示,test_tbl的主键为(id, create_time),并且按照主键进行存储排序,按照create_time进行数据分区,数据保留最近一个月。
CREATE TABLE test_tbl (
id UInt16,
create_time Date,
comment Nullable(String)
) ENGINE = MergeTree()
PARTITION BY create_time
ORDER BY (id, create_time)
PRIMARY KEY (id, create_time)
TTL create_time + INTERVAL 1 MONTH
SETTINGS index_granularity=8192;
写入数据:值得注意的是这里我们写入了几条primary key相同的数据。
insert into test_tbl values(0, '2019-12-12', null);
insert into test_tbl values(0, '2019-12-12', null);
insert into test_tbl values(1, '2019-12-13', null);
insert into test_tbl values(1, '2019-12-13', null);
insert into test_tbl values(2, '2019-12-14', null);
查询数据: 可以看到虽然主键id、create_time相同的数据只有3条数据,但是结果却有5行。
select count(*) from test_tbl;
┌─count()─┐
│ 5 │
└─────────┘
select * from test_tbl;
┌─id─┬─create_time─┬─comment─┐
│ 2 │ 2019-12-14 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
┌─id─┬─create_time─┬─comment─┐
│ 1 │ 2019-12-13 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
┌─id─┬─create_time─┬─comment─┐
│ 0 │ 2019-12-12 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
┌─id─┬─create_time─┬─comment─┐
│ 1 │ 2019-12-13 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
┌─id─┬─create_time─┬─comment─┐
│ 0 │ 2019-12-12 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
由于MergeTree采用类似LSM tree的结构,很多存储层处理逻辑直到Compaction期间才会发生。因此强制后台compaction执行完毕,再次查询,发现仍旧有5条数据。
optimize table test_tbl final;
select count(*) from test_tbl;
┌─count()─┐
│ 5 │
└─────────┘
select * from test_tbl;
┌─id─┬─create_time─┬─comment─┐
│ 2 │ 2019-12-14 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
┌─id─┬─create_time─┬─comment─┐
│ 0 │ 2019-12-12 │ ᴺᵁᴸᴸ │
│ 0 │ 2019-12-12 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
┌─id─┬─create_time─┬─comment─┐
│ 1 │ 2019-12-13 │ ᴺᵁᴸᴸ │
│ 1 │ 2019-12-13 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
结合以上示例可以看到,MergeTree虽然有主键索引,但是其主要作用是加速查询,而不是类似MySQL等数据库用来保持记录唯一。即便在Compaction完成后,主键相同的数据行也仍旧共同存在。
为了解决MergeTree相同主键无法去重的问题,ClickHouse提供了ReplacingMergeTree引擎,用来做去重。
示例如下:
-- 建表
CREATE TABLE test_tbl_replacing (
id UInt16,
create_time Date,
comment Nullable(String)
) ENGINE = ReplacingMergeTree()
PARTITION BY create_time
ORDER BY (id, create_time)
PRIMARY KEY (id, create_time)
TTL create_time + INTERVAL 1 MONTH
SETTINGS index_granularity=8192;
-- 写入主键重复的数据
insert into test_tbl_replacing values(0, '2019-12-12', null);
insert into test_tbl_replacing values(0, '2019-12-12', null);
insert into test_tbl_replacing values(1, '2019-12-13', null);
insert into test_tbl_replacing values(1, '2019-12-13', null);
insert into test_tbl_replacing values(2, '2019-12-14', null);
-- 查询,可以看到未compaction之前,主键重复的数据,仍旧存在。
select count(*) from test_tbl_replacing;
┌─count()─┐
│ 5 │
└─────────┘
select * from test_tbl_replacing;
┌─id─┬─create_time─┬─comment─┐
│ 0 │ 2019-12-12 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
┌─id─┬─create_time─┬─comment─┐
│ 0 │ 2019-12-12 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
┌─id─┬─create_time─┬─comment─┐
│ 1 │ 2019-12-13 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
┌─id─┬─create_time─┬─comment─┐
│ 1 │ 2019-12-13 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
┌─id─┬─create_time─┬─comment─┐
│ 2 │ 2019-12-14 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
-- 强制后台compaction:
optimize table test_tbl_replacing final;
-- 再次查询:主键重复的数据已经消失。
select count(*) from test_tbl_replacing;
┌─count()─┐
│ 3 │
└─────────┘
select * from test_tbl_replacing;
┌─id─┬─create_time─┬─comment─┐
│ 2 │ 2019-12-14 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
┌─id─┬─create_time─┬─comment─┐
│ 1 │ 2019-12-13 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
┌─id─┬─create_time─┬─comment─┐
│ 0 │ 2019-12-12 │ ᴺᵁᴸᴸ │
└────┴─────────────┴─────────┘
虽然ReplacingMergeTree提供了主键去重的能力,但是仍旧有以下限制:
因此ReplacingMergeTree更多被用于确保数据最终被去重,而无法保证查询过程中主键不重复。
ClickHouse实现了CollapsingMergeTree来消除ReplacingMergeTree的限制。该引擎要求在建表语句中指定一个标记列Sign,后台Compaction时会将主键相同、Sign相反的行进行折叠,也即删除。
CollapsingMergeTree将行按照Sign的值分为两类:Sign=1的行称之为状态行,Sign=-1的行称之为取消行。
每次需要新增状态时,写入一行状态行;需要删除状态时,则写入一行取消行。
在后台Compaction时,状态行与取消行会自动做折叠(删除)处理。而尚未进行Compaction的数据,状态行与取消行同时存在。
因此为了能够达到主键折叠(删除)的目的,需要业务层进行适当改造:
1) 执行删除操作需要写入取消行,而取消行中需要包含与原始状态行一样的数据(Sign列除外)。所以在应用层需要记录原始状态行的值,或者在执行删除操作前先查询数据库获取原始状态行;
2)由于后台Compaction时机无法预测,在发起查询时,状态行和取消行可能尚未被折叠;另外,ClickHouse无法保证primary key相同的行落在同一个节点上,不在同一节点上的数据无法折叠。因此在进行count(*)、sum(col)等聚合计算时,可能会存在数据冗余的情况。为了获得正确结果,业务层需要改写SQL,将count()、sum(col)
分别改写为sum(Sign)、sum(col * Sign)
。
以下用示例说明:
-- 建表
CREATE TABLE UAct
(
UserID UInt64,
PageViews UInt8,
Duration UInt8,
Sign Int8
)
ENGINE = CollapsingMergeTree(Sign)
ORDER BY UserID;
-- 插入状态行,注意sign一列的值为1
INSERT INTO UAct VALUES (4324182021466249494, 5, 146, 1);
-- 插入一行取消行,用于抵消上述状态行。注意sign一列的值为-1,其余值与状态行一致;
-- 并且插入一行主键相同的新状态行,用来将PageViews从5更新至6,将Duration从146更新为185.
INSERT INTO UAct VALUES (4324182021466249494, 5, 146, -1), (4324182021466249494, 6, 185, 1);
-- 查询数据:可以看到未Compaction之前,状态行与取消行共存。
SELECT * FROM UAct;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │ 5 │ 146 │ -1 │
│ 4324182021466249494 │ 6 │ 185 │ 1 │
└─────────────────────┴───────────┴──────────┴──────┘
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │ 5 │ 146 │ 1 │
└─────────────────────┴───────────┴──────────┴──────┘
-- 为了获取正确的sum值,需要改写SQL:
-- sum(PageViews) => sum(PageViews * Sign)、
-- sum(Duration) => sum(Duration * Sign)
SELECT
UserID,
sum(PageViews * Sign) AS PageViews,
sum(Duration * Sign) AS Duration
FROM UAct
GROUP BY UserID
HAVING sum(Sign) > 0;
┌──────────────UserID─┬─PageViews─┬─Duration─┐
│ 4324182021466249494 │ 6 │ 185 │
└─────────────────────┴───────────┴──────────┘
-- 强制后台Compaction
optimize table UAct final;
-- 再次查询,可以看到状态行、取消行已经被折叠,只剩下最新的一行状态行。
select * from UAct;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │ 6 │ 185 │ 1 │
└─────────────────────┴───────────┴──────────┴──────┘
CollapsingMergeTree虽然解决了主键相同的数据即时删除的问题,但是状态持续变化且多线程并行写入情况下,状态行与取消行位置可能乱序,导致无法正常折叠。
如下面例子所示:
乱序插入示例。
-- 建表
CREATE TABLE UAct_order
(
UserID UInt64,
PageViews UInt8,
Duration UInt8,
Sign Int8
)
ENGINE = CollapsingMergeTree(Sign)
ORDER BY UserID;
-- 先插入取消行
INSERT INTO UAct_order VALUES (4324182021466249495, 5, 146, -1);
-- 后插入状态行
INSERT INTO UAct_order VALUES (4324182021466249495, 5, 146, 1);
-- 强制Compaction
optimize table UAct_order final;
-- 可以看到即便Compaction之后也无法进行主键折叠: 2行数据仍旧都存在。
select * from UAct_order;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249495 │ 5 │ 146 │ -1 │
│ 4324182021466249495 │ 5 │ 146 │ 1 │
└─────────────────────┴───────────┴──────────┴──────┘
为了解决CollapsingMergeTree乱序写入情况下无法正常折叠问题,VersionedCollapsingMergeTree表引擎在建表语句中新增了一列Version,用于在乱序情况下记录状态行与取消行的对应关系。主键相同,且Version相同、Sign相反的行,在Compaction时会被删除。
与CollapsingMergeTree类似, 为了获得正确结果,业务层需要改写SQL,将count()、sum(col)
分别改写为sum(Sign)、sum(col * Sign)
。
示例如下:
乱序插入示例。
-- 建表
CREATE TABLE UAct_version
(
UserID UInt64,
PageViews UInt8,
Duration UInt8,
Sign Int8,
Version UInt8
)
ENGINE = VersionedCollapsingMergeTree(Sign, Version)
ORDER BY UserID;
-- 先插入一行取消行,注意Signz=-1, Version=1
INSERT INTO UAct_version VALUES (4324182021466249494, 5, 146, -1, 1);
-- 后插入一行状态行,注意Sign=1, Version=1;及一行新的状态行注意Sign=1, Version=2,将PageViews从5更新至6,将Duration从146更新为185。
INSERT INTO UAct_version VALUES (4324182021466249494, 5, 146, 1, 1),(4324182021466249494, 6, 185, 1, 2);
-- 查询可以看到未compaction情况下,所有行都可见。
SELECT * FROM UAct_version;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │ 5 │ 146 │ -1 │
│ 4324182021466249494 │ 6 │ 185 │ 1 │
└─────────────────────┴───────────┴──────────┴──────┘
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │ 5 │ 146 │ 1 │
└─────────────────────┴───────────┴──────────┴──────┘
-- 为了获取正确的sum值,需要改写SQL:
-- sum(PageViews) => sum(PageViews * Sign)、
-- sum(Duration) => sum(Duration * Sign)
SELECT
UserID,
sum(PageViews * Sign) AS PageViews,
sum(Duration * Sign) AS Duration
FROM UAct_version
GROUP BY UserID
HAVING sum(Sign) > 0;
┌──────────────UserID─┬─PageViews─┬─Duration─┐
│ 4324182021466249494 │ 6 │ 185 │
└─────────────────────┴───────────┴──────────┘
-- 强制后台Compaction
optimize table UAct_version final;
-- 再次查询,可以看到即便取消行与状态行位置乱序,仍旧可以被正确折叠。
select * from UAct_version;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┬─Version─┐
│ 4324182021466249494 │ 6 │ 185 │ 1 │ 2 │
└─────────────────────┴───────────┴──────────┴──────┴─────────┘
ClickHouse通过SummingMergeTree来支持对主键列进行预先聚合。在后台Compaction时,会将主键相同的多行进行sum求和,然后使用一行数据取而代之,从而大幅度降低存储空间占用,提升聚合计算性能。
值得注意的是:
示例如下:
-- 建表
CREATE TABLE summtt
(
key UInt32,
value UInt32
)
ENGINE = SummingMergeTree()
ORDER BY key
-- 插入数据
INSERT INTO summtt Values(1,1),(1,2),(2,1)
-- compaction前查询,仍存在多行
select * from summtt;
┌─key─┬─value─┐
│ 1 │ 1 │
│ 1 │ 2 │
│ 2 │ 1 │
└─────┴───────┘
-- 通过GROUP BY进行聚合计算
SELECT key, sum(value) FROM summtt GROUP BY key
┌─key─┬─sum(value)─┐
│ 2 │ 1 │
│ 1 │ 3 │
└─────┴────────────┘
-- 强制compaction
optimize table summtt final;
-- compaction后查询,可以看到数据已经被预先聚合
select * from summtt;
┌─key─┬─value─┐
│ 1 │ 3 │
│ 2 │ 1 │
└─────┴───────┘
-- compaction后,仍旧需要通过GROUP BY进行聚合计算
SELECT key, sum(value) FROM summtt GROUP BY key
┌─key─┬─sum(value)─┐
│ 2 │ 1 │
│ 1 │ 3 │
└─────┴────────────┘
AggregatingMergeTree也是预先聚合引擎的一种,用于提升聚合计算的性能。与SummingMergeTree的区别在于:SummingMergeTree对非主键列进行sum聚合,而AggregatingMergeTree则可以指定各种聚合函数。
AggregatingMergeTree的语法比较复杂,需要结合物化视图或ClickHouse的特殊数据类型AggregateFunction一起使用。在insert和select时,也有独特的写法和要求:写入时需要使用-State语法,查询时使用-Merge语法。
以下通过示例进行介绍。
示例一:配合物化视图使用。
-- 建立明细表
CREATE TABLE visits
(
UserID UInt64,
CounterID UInt8,
StartDate Date,
Sign Int8
)
ENGINE = CollapsingMergeTree(Sign)
ORDER BY UserID;
-- 对明细表建立物化视图,该物化视图对明细表进行预先聚合
-- 注意:预先聚合使用的函数分别为: sumState, uniqState。对应于写入语法-State.
CREATE MATERIALIZED VIEW visits_agg_view
ENGINE = AggregatingMergeTree() PARTITION BY toYYYYMM(StartDate) ORDER BY (CounterID, StartDate)
AS SELECT
CounterID,
StartDate,
sumState(Sign) AS Visits,
uniqState(UserID) AS Users
FROM visits
GROUP BY CounterID, StartDate;
-- 插入明细数据
INSERT INTO visits VALUES(0, 0, '2019-11-11', 1);
INSERT INTO visits VALUES(1, 1, '2019-11-12', 1);
-- 对物化视图进行最终的聚合操作
-- 注意:使用的聚合函数为 sumMerge, uniqMerge。对应于查询语法-Merge.
SELECT
StartDate,
sumMerge(Visits) AS Visits,
uniqMerge(Users) AS Users
FROM visits_agg_view
GROUP BY StartDate
ORDER BY StartDate;
-- 普通函数 sum, uniq不再可以使用
-- 如下SQL会报错: Illegal type AggregateFunction(sum, Int8) of argument
SELECT
StartDate,
sum(Visits),
uniq(Users)
FROM visits_agg_view
GROUP BY StartDate
ORDER BY StartDate;
示例二:配合特殊数据类型AggregateFunction使用。
-- 建立明细表
CREATE TABLE detail_table
( CounterID UInt8,
StartDate Date,
UserID UInt64
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(StartDate)
ORDER BY (CounterID, StartDate);
-- 插入明细数据
INSERT INTO detail_table VALUES(0, '2019-11-11', 1);
INSERT INTO detail_table VALUES(1, '2019-11-12', 1);
-- 建立预先聚合表,
-- 注意:其中UserID一列的类型为:AggregateFunction(uniq, UInt64)
CREATE TABLE agg_table
( CounterID UInt8,
StartDate Date,
UserID AggregateFunction(uniq, UInt64)
) ENGINE = AggregatingMergeTree()
PARTITION BY toYYYYMM(StartDate)
ORDER BY (CounterID, StartDate);
-- 从明细表中读取数据,插入聚合表。
-- 注意:子查询中使用的聚合函数为 uniqState, 对应于写入语法-State
INSERT INTO agg_table
select CounterID, StartDate, uniqState(UserID)
from detail_table
group by CounterID, StartDate
-- 不能使用普通insert语句向AggregatingMergeTree中插入数据。
-- 本SQL会报错:Cannot convert UInt64 to AggregateFunction(uniq, UInt64)
INSERT INTO agg_table VALUES(1, '2019-11-12', 1);
-- 从聚合表中查询。
-- 注意:select中使用的聚合函数为uniqMerge,对应于查询语法-Merge
SELECT uniqMerge(UserID) AS state
FROM agg_table
GROUP BY CounterID, StartDate;
ClickHouse提供了丰富多样的表引擎,应对不同的业务需求。本文概览了ClickHouse的表引擎,同时对于MergeTree系列表引擎进行了详细对比和样例示范。
在这些表引擎之外,ClickHouse还提供了Replicated、Distributed等高级表引擎,我们会在后续进一步深度解读。
阿里云已经率先推出了ClickHouse的云托管产品,产品首页地址:云数据库ClickHouse,目前正在免费公测中,欢迎大家点击链接申请免费试用。
我们也开通了阿里云ClickHouse钉钉交流群,通过专业的数据库专家为客户提供咨询、答疑服务。欢迎大家任选如下方式入群交流,我们将会定期推送ClickHouse最佳实践、操作指南、原理解读等深度文章。