- NFT热潮下的安全隐患:SSL证书如何守护数字资产?
ssl证书
NFT热潮下的安全隐患:SSL证书如何守护数字资产?近年来,NFT(非同质化代币)以其独特性和稀缺性迅速走红,成为数字艺术、游戏、收藏品等领域的热门话题。然而,随着NFT市场的火爆,安全问题也日益凸显:黑客攻击、钓鱼网站、数据泄露等事件频发,给数字资产的安全带来了巨大威胁。在这样的背景下,SSL证书作为网络安全的基础设施,正在为NFT平台和用户提供关键的安全保障。1.NFT热潮背后的安全隐患·黑客
- ——当机器开始"思考",人类终于读懂了自己的大脑
人工智能机器学习
第一层突破:AI让我们看见"思维的源代码"想象一下,你正在教ChatGPT写诗——当它从"枯藤老树昏鸦"的堆砌,突然产出"月光在二进制河流里流淌"的句子时,这不仅是算法的胜利,更是一面照向人类思维的魔镜。科学家发现,AI学习语言的方式竟与婴儿惊人相似:✅模式捕捉:像人类从环境声音中提取词汇✅联想迭代:用已知概念嫁接新知识(比如用"电"理解"闪电网络")✅创造性错误:AI的"幻觉"对应人脑的直觉跳跃
- AI浪潮下的数据保卫战:SSL证书为何成为企业刚需?
ssl证书
随着人工智能(AI)技术的迅猛发展,数据已成为企业最核心的资产之一。无论是训练AI模型、优化算法,还是提供个性化服务,数据的安全性和隐私保护都至关重要。然而,AI的广泛应用也带来了前所未有的安全挑战,尤其是在数据传输和存储过程中,如何防止数据泄露、篡改和窃取成为企业必须面对的问题。在这样的背景下,SSL证书作为网络安全的基础设施,正逐渐成为企业的“刚需”。1.AI时代的数据安全挑战数据量激增:AI
- 代码托管平台深度解析:Gitee如何赋能本土开发团队
在数字化进程加速的今天,代码托管平台不仅是技术协作的工具,更是团队效率与安全的核心保障。Gitee作为国内技术生态的标杆产品,凭借其本地化适配能力与全流程工具链,成为开发者的强力后盾。本文从实际场景出发,剖析Gitee如何助力团队突破开发瓶颈。一、本地化体验:消除开发环境壁垒Gitee扎根国内开发者生态,从网络基础设施到用户界面均针对本土需求优化:高速访问:国内服务器集群确保代码拉取、提交响应毫秒
- 尾号限行API:实现城市交通管理的智能化
api
一、引言随着城市化进程的加快,交通拥堵问题日益严重。为了缓解交通压力,许多城市采取了尾号限行措施。尾号限行是指根据车辆牌照的最后一位数字,限制某些车辆在特定日期或时间段内行驶。为了更高效地管理和实施这一政策,尾号限行API应运而生。二、什么是尾号限行API?尾号限行API是一种基于互联网的应用程序接口,它能够提供实时、准确的限行信息查询服务。通过简单的HTTP请求,用户可以获取指定城市的当前限行规
- 迈向数据科学的第一步:在Python中支持向量回归
weixin_26746401
python机器学习人工智能深度学习大数据
什么是支持向量回归?(WhatisSupportVectorRegression?)Supportvectorregressionisaspecialkindofregressionthatgivesyousomesortofbufferorflexibilitywiththeerror.Howdoesitdothat?I’mgoingtoexplainittoyouinsimpletermsby
- 【2025软考高级架构师】重点笔记部分——3、系统规划、分析与设计
Richard Chijq
2025年软考系统架构师笔记系统架构
目录一.系统规划1.1项目的提出与选择1.2可行性研究与效益分析1.3方案的制订和改进1.4新旧系统分析和比较二.系统分析与设计2.1定义问题与归结模型2.2需求2.2.1需求工程2.2.2需求分析2.3系统设计(软件设计)2.4结构化分析与设计2.4.1分析步骤2.4.2分析工具2.4.3结构化设计2.4.4数据流图、流程图2.5面向对象分析与设计2.5.1基本概念2.5.2UML(统一建模语言
- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- SpringBoot统一功能处理——统一异常处理
棕豆兔&
springbootspringjava
目录一、异常简单使用二、@ControllerAdvice源码分析一、异常简单使用统一异常处理使用的是@ControllerAdvice+@ExceptionHandler来实现的,@ControllerAdvice表示控制器通知类,@ExceptionHandler是异常处理器,两个结合表示当出现异常的时候执行某个通知,也就是执行某个方法事件。importcom.example.demo.mod
- 大模型——Spring Boot 整合 Spring AI 实现项目接入ChatGPT
不二人生
大模型人工智能大模型
大模型——SpringBoot整合SpringAI实现项目接入ChatGPT随着人工智能技术的快速发展,越来越多的应用程序开始集成人工智能功能,以提供更智能、更个性化的体验。诸如ChatGPT等开放性大型语言模型的出现,使得自然语言处理和对话系统的开发变得更加容易和普及。这些技术已经在社交媒体、客户服务、教育等领域展现出巨大潜力,对于提升用户体验和提高工作效率至关重要。优势在之前,openai已经
- MongoDB 集群模式简单了解
黑风风
网络运维NoSQLmongodb数据库
MongoDB集群模式简单了解在现代应用架构中,数据库的扩展性和高可用性至关重要,而MongoDB作为NoSQL数据库的佼佼者,提供了多种集群模式来应对不同场景的需求。这篇文章将深入探讨MongoDB的主要集群模式,并分析它们的适用场景和优缺点。1.MongoDB的三大集群模式MongoDB主要提供以下三种集群模式,每种模式都有其独特的应用场景和优势:副本集(ReplicaSet)——高可用性与数
- RocketMQ的Consumer源码分析
foolishboy_w
后台技术rocketmqjava-rocketmqrocketmqjava
RocketMQ的Consumer源码分析文章目录RocketMQ的Consumer源码分析Consumer的Rebalance流程Consumer的消息拉取流程Consumer的Offset管理这一节我们分析RocketMQ的Consumer的启动流程以及消息处理过程。下图是RocketMQ启动流程、Rebalance、以及消息拉取处理的较为完整的流程图。##Consumer的启动流程Consu
- 深度学习在SSVEP信号分类中的应用分析
自由的晚风
深度学习分类人工智能
目录前言1.SSVEP信号分类的处理流程2.模型输入和数据预处理3.模型结构设计3.1卷积神经网络(CNN)3.2长短期记忆网络(LSTM)4.训练方法与激活函数5.性能评估与挑战6.未来方向前言随着脑机接口(BCI)技术的发展,SSVEP(稳态视觉诱发电位)因其高信息传输速率和短训练时间而成为最受欢迎的BCI范式之一。近年来,深度学习方法在SSVEP信号分类中取得了显著的成果。本文通过对31个深
- UML面向对象建模与设计——笔记(二)
忧愁的awe
uml面向对象
UML面向对象建模与设计(第二版)笔记——第二部分:分析与设计开发过程1系统构思2分析3系统设计4类设计5实现6测试7培训8部署9开发生命周期系统构思1阐释概念2准备问题陈述系统分析1领域分析1创建领域类模型2分析领域状态模型3领域交互模型2应用分析1应用交互模型2应用类模型3应用状态模型系统设计类设计1填补空白区2实现用例3设计算法1选择算法2选择数据结构3定义内部类的操作4把操作分配给个类4向
- 大语言模型引擎全解析:Transformers、vLLM、Llama.cpp等,最佳选择全攻略!
大模型入门教程
语言模型llama人工智能DeepSeekpromptAI大模型大模型
近年来,大语言模型(LLMs)如GPT、LLaMA、BERT等已经成为人工智能领域的核心驱动力。然而,如何高效地运行和优化这些模型,成为了开发者和研究者面临的重要挑战。为此,一系列专为大语言模型设计的引擎应运而生。本文将带你深入了解Transformers、vLLM、Llama.cpp、SGLang、MLX和Ollama这些引擎,帮助你找到最适合的工具,释放大语言模型的全部潜力!作为技术人员,不仅
- 【2025深夜随笔】简单认识一下Android Studio
LuXi_foryou
Androidstudio的常见教程androidstudioandroidide
【2025深夜随笔】AndroidStudio全生命周期开发指南:从安装到项目实战简单解析一、AndroidStudio核心认知1.1官方定位与生态价值AndroidStudio(简称AS)是谷歌官方推出的安卓开发IDE(集成开发环境),集代码编写、调试、性能分析、模拟器管理、APK打包于一体。其核心优势包括:官方支持:与AndroidSDK深度集成,优先适配新系统(如Android15)智能化工
- Python __main__的典型应用
大数据张老师
Python程序设计pythonjava服务器
__main__的典型应用在Python编程中,if__name__=='__main__'结构常用于控制程序的执行流程,确保某些代码仅在脚本直接运行时执行,而在模块被导入时不执行。这种机制可以让Python代码更加模块化、可复用,并提高程序的可读性。本节将详细讲解if__name__=='__main__'的几种典型应用场景。1.作为独立程序执行主函数在Python中,通常会使用if__name
- k-Shape:高效准确的聚类方法
优化算法侠Swarm-Opti
信号处理故障诊断聚类机器学习人工智能matlab数据挖掘
引言时间数据在许多学科中的扩散和无处不在,已经对时间序列的分析和挖掘产生了极大的兴趣。聚类是最流行的数据挖掘方法之一,不仅因为它的探索性,而且作为其他技术的预处理步骤或子程序。常用的有-means聚类算法。本文介绍了一种新的时间序列聚类算法k-Shape。k-Shape依赖于一个可扩展的迭代优化过程,它创建同质和良好分离的集群。作为距离度量,k-Shape使用标准化的交叉相关。基于距离度量的性质,
- 数据分析面试全攻略:业务分析能力篇
代码CC
数据分析(包括各种面试题)面试数据分析面试pythonsql
前言:业务分析能力考察重点在数据分析岗位面试中,业务分析能力是区分初级与中高级候选人的核心要素。本篇将从指标设计、异常分析、用户增长三大模块,解析业务分析能力提升路径。一、指标设计:用数据定义业务价值1.1用户留存分析体系留存率计算模型定义公式:次日留存率=第2天活跃用户数/首日新增用户数×100%7日留存率=第8天活跃用户数/首日新增用户数×100%SQL计算模板:WITHfirst_login
- 基于文本特征的微博谣言检测
机器懒得学习
人工智能大数据图像处理计算机视觉
随着社交媒体的普及,微博等平台成为了信息传播的重要渠道。然而,虚假信息和谣言的传播也带来了严重的社会问题。因此,自动化的谣言检测技术变得尤为重要。本文将介绍如何基于文本特征,使用深度学习模型(如LSTM、CNN)和传统机器学习模型(如SVM)来实现微博谣言检测,并对这些模型的性能进行比较。完整项目地址:基于文本特征的微博谣言检测1.项目概述本项目旨在通过分析微博文本内容,自动检测其中的谣言。系统通
- doris:分析 S3/HDFS 上的文件
向阳1218
大数据doris
通过TableValueFunction功能,Doris可以直接将对象存储或HDFS上的文件作为Table进行查询分析。并且支持自动的列类型推断。提示使用方式更多使用方式可参阅TableValueFunction文档:S3:支持S3兼容的对象存储上的文件分析。HDFS:支持HDFS上的文件分析。这里我们通过S3TableValueFunction举例说明如何进行文件分析。自动推断文件列类型>DES
- 华为与思科路由器静态路由配置
wespten
网络协议栈网络设备5G物联网网络工具开发华为
一、静态路由简介静态路由路由项(routingentry)由手动配置,而非动态决定。与动态路由不同,静态路由是固定的,不会改变,即使网络状况已经改变或是重新被组态。一般来说,静态路由是由网络管理员逐项加入路由表。优点:使用静态路由的另一个好处为网络安全保密性高。动态路由因为需要路由器之间频繁地交换各自的路由表,而对路由表的分析可以揭示网络的拓扑结构和网络地址等信息。因此,网络出于安全方面的考虑也可
- R语言对高频交易订单流进行建模分析 4
oxuzhenyi
实验楼课程机器学习R
一、实验介绍--订单流模型拟合1.1实验知识点指数核hawkes过程拟合正反馈强度分析订单量影响分析1.2实验环境R3.4.1Rstudio二、订单流模型拟合在上节中我们对订单流数据做了一些统计分析,对交易的一些特征有了一些粗浅的理解,在本节中我们要做的是利用实际数据来拟合hawkes过程,看一看真实数据的订单流动力学中有什么特征。首先我们仍是选出交易时间内的数据:library(tidyvers
- R语言对高频交易订单流进行建模分析 3
oxuzhenyi
实验楼课程机器学习R
一、实验介绍--订单流数据描述分析1.1实验知识点订单流数据表示订单间隔分析订单信息率平稳性研究订单流动性研究限价单相对价格分析1.2实验环境R3.4.1Rstudio二、订单流数据描述分析2.1订单流数据表示当我们在金融市场上做交易时,可以看到一个委托单簿,上面陈列着买价和卖价以及它们对应的量,举个例子,比特币市场的订单簿:可以看到红色代表的是卖价,或者说是ask,而绿色代表的是买价,或者说是b
- SQL Server 性能优化最佳实践
Morris只会敲命令
性能优化
引言在数据驱动的业务场景中,SQLServer作为企业级关系型数据库的核心,其性能直接影响业务系统的吞吐量和响应速度。无论是应对高并发交易、复杂分析查询,还是处理海量数据写入,性能瓶颈往往隐藏在索引设计、查询逻辑、锁竞争或资源配置中。本文将深入剖析SQLServer性能优化的关键技术,从诊断工具使用到实战调优策略,提供一套完整的优化闭环方案。一、性能分析:定位瓶颈的科学方法1.1内置监控工具实战1
- 代码托管平台的选择:Gitee的本土化优势与高效开发实践
kuaile0906
gitee源代码管理团队开发devopsci/cd开源
1、Gitee(码云)作为国内领先的代码托管平台,2、其本土化服务与高效协作能力备受开发者青睐,3、功能完备性助力团队实现敏捷开发。Gitee凭借稳定的服务架构与符合国内用户习惯的设计,在代码托管领域占据重要地位。其不仅提供基础的代码管理功能,还集成了CI/CD、项目管理、文档协作等工具,有效降低多平台切换成本,提升开发效率。简洁的中文界面与本地化技术支持,进一步优化了用户体验,尤其适合国内开发团
- 使用服务器搭建无门槛ChatGPT WEB应用LobeChat
莱卡云(Lcayun)
服务器chatgpt前端网络linux运维
一、服务器实例配置实例选型推荐配置:2核4GB内存,保障AI推理和并发访问的流畅性67。操作系统:选择Ubuntu22.04LTS,适配Docker环境与LobeChat依赖库23。安全组规则:开放以下端口:3210(LobeChat默认Web端口)SSH(22)(用于远程管理)25。二、Docker环境与LobeChat部署安装Docker与Compose
- 如何使用订单流分析工具(下)
松鼠Quant
量化研究量化交易期货交易期货订单流
如何使用订单流分析工具(下)本文讲解如何使用订单流工具,POC,堆积带,失衡,订单分布,参数调整和设置。
- 基于机器学习的恶意软件检测系统的详细设计与实现
源码空间站11
机器学习人工智能课程设计python网络安全信息安全恶意软件检测
以下是一个基于机器学习的恶意软件检测系统的详细设计与实现,适合作为课程作业或项目开发。我们将实现一个通过机器学习模型分析恶意软件特征来检测文件是否为恶意软件的系统。总体思路数据准备:选择现有的恶意软件数据集(如Kaggle的恶意软件数据集)或构造模拟数据集。数据集中包含文件的特征(如二进制特征、字符串特征、API调用特征等)和标签("恶意"或"正常")。特征提取:提取文件的静态特征(如文件大小、字
- MATLAB控制函数测试要点剖析
蚂蚁质量
其他matlab深度学习
一、功能准确性检验基础功能核验针对常用控制函数,像用于传递函数建模的tf、构建状态空间模型的ss,以及开展阶跃响应分析的step等,必须确认其能精准执行基础操作。以tf函数为例,在输入分子与分母系数后,理应生成准确无误的传递函数模型;而运用step函数时,则应能够精准计算并绘制出系统的阶跃响应曲线,如实反映系统对阶跃输入的动态响应过程。复杂功能测试对于高级控制函数,例如线性二次调节器lqr、模型预
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象