[Tensorflow2.X][转载]tf.data读取tf.record文件并与tf.keras结合使用

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras

source_dir = "./generate_csv"
print(os.listdir(source_dir))

def get_filename_by_prefix(source_dir, prefix_name):
    all_files = os.listdir(source_dir)
    results = []
    for filename in all_files:
        if filename.startswith(prefix_name):
            results.append(os.path.join(source_dir,filename))
    return  results

train_filenames = get_filename_by_prefix(source_dir,"train")
valid_filenames = get_filename_by_prefix(source_dir,"valid")
test_filenames = get_filename_by_prefix(source_dir,"test")

import pprint
pprint.pprint(train_filenames)
pprint.pprint(valid_filenames)
pprint.pprint(test_filenames)

def parse_csv_line(line, n_fields=9):
    defs = [tf.constant(np.nan)]*n_fields
    parsed_fields = tf.io.decode_csv(line,record_defaults=defs)
    x = tf.stack(parsed_fields[0:-1])
    y = tf.stack(parsed_fields[-1:])
    return x,y

def csv_reader_dataset(filenames,n_readers=5,batch_size=32,n_parse_threads=5,shuffle_buffer_size=10000):
    dataset = tf.data.Dataset.list_files(filenames)
    dataset = dataset.repeat()
    dataset = dataset.interleave(
        lambda filename:tf.data.TextLineDataset(filename).skip(1),
        cycle_length=n_readers
    )
    dataset.shuffle(shuffle_buffer_size)
    dataset = dataset.map(parse_csv_line,num_parallel_calls=n_parse_threads)
    dataset = dataset.batch(batch_size)
    return dataset

batch_size = 32
train_set = csv_reader_dataset(train_filenames,batch_size=batch_size)
valid_set = csv_reader_dataset(valid_filenames,batch_size=batch_size)
test_set = csv_reader_dataset(test_filenames,batch_size=batch_size)


def serialize_example(x,y):
    #converts x, y to tf.train.Example and Serialize
    input_features = tf.train.FloatList(value=y)
    label = tf.train.FloatList(value=y)
    feature = tf.train.Features(
        features={
            "input_features": tf.train.Feature(
                float_list = input_features),
            "label": tf.train.Feature(float_list=label)
        }
    )
    example = tf.train.Example(features=features)
    return example.SerializerToString()

def csv_dataset_to_tfrecords(base_filename, dataset,
                             n_shards,steps_per_shard,
                             compression_type=None):
    options = tf.io.TFRecordOptions(
        compression_type=compression_type)
    all_filename=[]
    for shard_id in range(n_shards):
        filename_fullpath='{}_{:05d}-of-{:05d}',format(
            base_filename,shard_id,n_shards)
        with tf.io.TFRecordWriter(filename_fullpath,options) as writer:
            for x_batch,y_batch in dataset.take(steps_per_shard):
                for x_example, y_example in zip(x_batch,y_batch):
                    writer.write(
                        serialize_example(x_example,y_example))
        all_filename.append(filename_fullpath)
        return all_filename


n_shards = 20
train_step_per_shard = 11610//batch_size//n_shards
valid_step_per_shard = 3800//batch_size//n_shards
test_step_per_shard = 5170//batch_size//n_shards

output_dir = "generate_tfrecords"
if not os.path.exists(output_dir):
    os.makedirs(output_dir)

train_basename = os.path.join(output_dir,"train")
valid_basename = os.path.join(output_dir,"valid")
test_basename = os.path.join(output_dir,"test")

train_tfrecord_filenames = csv_dataset_to_tfrecords(
    train_filenames,train_set,n_shards,train_step_per_shard,None)
valid_tfrecord_filenames = csv_dataset_to_tfrecords(
    valid_basename,valid_set,n_shards,valid_step_per_shard,None)
test_tfrecord_filenames = csv_dataset_to_tfrecords(
    test_filenames,test_set,n_shards,test_step_per_shard,None)

n_shards = 20
train_step_per_shard = 11610//batch_size//n_shards
valid_step_per_shard = 3800//batch_size//n_shards
test_step_per_shard = 5170//batch_size//n_shards

output_dir = "generate_tfrecords_zip"
if not os.path.exists(output_dir):
    os.makedirs(output_dir)

train_basename = os.path.join(output_dir,"train")
valid_basename = os.path.join(output_dir,"valid")
test_basename = os.path.join(output_dir,"test")

train_tfrecord_filenames = csv_dataset_to_tfrecords(
    train_filenames,train_set,n_shards,train_step_per_shard,compression_type="GZIP")
valid_tfrecord_filenames = csv_dataset_to_tfrecords(
    valid_basename,valid_set,n_shards,valid_step_per_shard,compression_type="GZIP")
test_tfrecord_filenames = csv_dataset_to_tfrecords(
    test_filenames,test_set,n_shards,test_step_per_shard,compression_type="GZIP")

pprint.pprint(train_tfrecord_filenames)
pprint.pprint(valid_tfrecord_filenames)
pprint.pprint(test_tfrecord_filenames)


expecte_feature = {
    "input_features":tf.io.FixedLenFeature([8],dtype=tf.float32),
    "label": tf.io.FixedLenFeature([1],dtype=tf.float32)
}
def parse_example(serialized_example):
    example = tf.io.parse_single_example(serialized_example,expecte_feature)
    return example["input_features"],example["label"]

def tfrecords_reader_dataset(filenames,n_readers=5,batch_size=32,n_parse_threads=5,shuffle_buffer_size=10000):
    dataset = tf.data.Dataset.list_files(filenames)
    dataset = dataset.repeat()
    dataset = dataset.interleave(
        lambda filename:tf.data.TFRecordDataset(filename,compression_type="GZIP"),
        cycle_length=n_readers
    )
    dataset.shuffle(shuffle_buffer_size)
    dataset = dataset.map(parse_example,num_parallel_calls=n_parse_threads)
    dataset = dataset.batch(batch_size)
    return dataset

tfrecords_train = tfrecords_reader_dataset(train_tfrecord_filenames,batch_size=3)
for x_batch,y_batch in tfrecords_train.take(2):
    print(x_batch)
    print(y_batch)

batch_size = 32
tfrecords_train_set = tfrecords_reader_dataset(
    train_tfrecord_filenames,batch_size=batch_size)
tfrecords_valid_set = tfrecords_reader_dataset(
    valid_tfrecord_filenames,batch_size=batch_size)
tfrecords_test_set = tfrecords_reader_dataset(
    test_tfrecord_filenames,batch_size=batch_size)

model = tf.keras.models.Sequential([
    keras.layers.Dense(30,activation='relu',input_shape=[8]),
    keras.layers.Dense(1)
])
model.compile(loss = "mean_squared_error",optimizer='sgd')
callbacks = [keras.callbacks.EarlyStopping(patience=5,min_delta=1e-2)]
history = model.fit(tfrecords_train_set,validation_data=tfrecords_valid_set,steps_per_epoch = 11160// batch_size,
                    validation_steps = 3870//batch_size, epochs=100,callbacks=callbacks)
model.evaluate(tfrecords_test_set,steps=5160//batch_size)
 

你可能感兴趣的:(tensorflow)