角加速度: α = d ω d t = d 2 θ d t 2 \alpha=\frac{{\rm d}\omega}{{\rm d}t}=\frac{{\rm d}^2\theta}{{\rm d}t^2} α=dtdω=dt2d2θ
法相加速度: a n = v 2 r = w 2 r a_n = \frac{v^2}{r} = w^2r an=rv2=w2r
切向加速度: a t = d v d t = r d θ d t a_t = \frac{{\rm d}v}{{\rm d}t} = \frac{r{\rm d}\theta}{{\rm d}t} at=dtdv=dtrdθ
加速度大小: a = ( a n 2 + a t 2 ) 1 / 2 a = (a^2_n + a^2_t)^{1/2} a=(an2+at2)1/2
加速度方向: tan φ = a n a t \tan\varphi=\frac{a_n}{a_t} tanφ=atan
第二定律: F ⃗ = d p ⃗ d t = m a ⃗ \vec{F}=\frac{{\rm d}\vec{p}}{{\rm d}t}=m\vec{a} F=dtdp=ma
摩擦力: F f = μ F N F_f=\mu F_N Ff=μFN
冲量: I ⃗ = p ⃗ − p 0 ⃗ \vec{I}=\vec{p}-\vec{p_0} I=p−p0
合外力: F e x ⃗ = d p ⃗ d t \vec{F^{ex}}=\frac{{\rm d}\vec{p}}{{\rm d}t} Fex=dtdp
动能定理: ∑ W = ∑ E k − ∑ E k 0 \sum{W}=\sum{E_k}-\sum{E_{k_0}} ∑W=∑Ek−∑Ek0
功能原理: W e x + W n c i n = E − E 0 W^{ex}+W^{in}_{nc}=E-E_0 Wex+Wncin=E−E0
力矩: M ⃗ = r ⃗ × F ⃗ \vec{M}=\vec{r}\times\vec{F} M=r×F
转动定律: M ⃗ = J α ⃗ \vec M=J\vec \alpha M=Jα
角动量: L ⃗ = r ⃗ × p ⃗ = m r ⃗ × v ⃗ \vec L=\vec r\times\vec p=m\vec r\times\vec v L=r×p=mr×v
刚体转动的角动量: L = J ω L=J\omega L=Jω
角动量和力矩关系: M ⃗ = d L ⃗ d t \vec M=\frac{{\rm d}\vec L}{{\rm d}t} M=dtdL
角动量定理: ∫ t 1 t 2 M d t = J 2 w 2 − J 1 w 1 = L 2 − L 1 \int_{t_1}^{t_2}M{\rm d}t=J_2w_2-J_1w_1=L_2-L_1 ∫t1t2Mdt=J2w2−J1w1=L2−L1
转轴过中心的细棒: J = m l 2 12 J=\frac{ml^2}{12} J=12ml2
转轴过端的细棒: J = m l 2 3 J=\frac{ml^2}{3} J=3ml2
圆筒: J = m 2 ( R 2 2 + R 1 2 ) J=\frac{m}{2}(R_2^2+R_1^2) J=2m(R22+R12)
平面简谐波波动方程: y = A cos ( w t − k x ) , y = A cos [ w t − k ( x − x 0 ) + φ ] y=A\cos(wt-kx),y=A\cos[wt-k(x-x_0)+\varphi] y=Acos(wt−kx),y=Acos[wt−k(x−x0)+φ]
平面简谐波的能量: E = E k + E p = 1 2 m ω 2 A 2 = 1 2 k A 2 E=E_k+E_p=\frac{1}{2}m\omega ^2A^2=\frac{1}{2}kA^2 E=Ek+Ep=21mω2A2=21kA2
平均能流: I = P ˉ S = 1 2 ρ A 2 ω 2 u I=\frac{\bar{P}}{S}=\frac{1}{2}\rho A^2\omega^2u I=SPˉ=21ρA2ω2u
双缝干涉明条纹: x = ± k d ′ λ d , k = 0 , 1 , 2 , … x=\pm k\frac{d'\lambda}{d},k=0,1,2,\ldots x=±kdd′λ,k=0,1,2,…
相位差与光程差关系: Δ φ = 2 π Δ λ \Delta\varphi=2\pi\frac{\Delta}{\lambda} Δφ=2πλΔ
薄膜干涉(干涉加强): Δ r = 2 n 2 d + λ 2 = k λ , k = 1 , 2 , … \Delta_r=2n_2d+\frac{\lambda}{2}=k\lambda,k=1,2,\ldots Δr=2n2d+2λ=kλ,k=1,2,…
马吕斯定律: I = I 0 cos 2 α I=I_0\cos^2\alpha I=I0cos2α
布儒斯特定律: tan i B = n 2 n 1 , i B + r B = π 2 \tan i_B=\frac{n_2}{n_1},i_B+r_B=\frac{\pi}{2} taniB=n1n2,iB+rB=2π
电场中的高斯定理: Φ e = ∮ s E ⃗ ⋅ d S ⃗ = q ε 0 \Phi_e=\oint_s\vec E\cdot{\rm d}\vec S=\frac{q}{\varepsilon_0} Φe=∮sE⋅dS=ε0q
电势差: U A B = V A − V B = ∫ A B E ⃗ ⋅ d l ⃗ + V B U_{AB}=V_A-V_B=\int_{AB}\vec E\cdot{\rm d}\vec l+V_B UAB=VA−VB=∫ABE⋅dl+VB
某点电势: V A = ∫ A ∞ E ⃗ d l ⃗ V_A=\int_{A\infty}\vec E{\rm d}\vec l VA=∫A∞Edl
点电荷电场的电势: V = ∫ r ∞ E ⃗ ⋅ d l ⃗ = q 4 π ε 0 1 r V=\int_r^{\infty}\vec E\cdot{\rm d}\vec l=\frac{q}{4\pi\varepsilon_0}\frac{1}{r} V=∫r∞E⋅dl=4πε0qr1
并联电容的等效电容: C = C 1 + C 2 C=C_1+C_2 C=C1+C2
串联电容的等效电容: 1 C = 1 C 1 + 1 C 2 \frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2} C1=C11+C21
电容决定式: C = ε 0 ε r S d = ε S d C=\frac{\varepsilon_0\varepsilon_rS}{d}=\frac{\varepsilon S}{d} C=dε0εrS=dεS
静电平衡导体内部: E = 0 E=0 E=0
静电平衡导体表面: ∮ s E ⃗ ⋅ d S ⃗ = E Δ S = σ Δ S ε 0 → E = σ ε 0 \oint_s\vec E\cdot{\rm d}\vec S=E\Delta S=\frac{\sigma \Delta S}{\varepsilon_0}\rightarrow E=\frac{\sigma}{\varepsilon_0} ∮sE⋅dS=EΔS=ε0σΔS→E=ε0σ
静电场能量: W e = 1 2 C U 2 = 1 2 ε E 2 S d W_e=\frac{1}{2}CU^2=\frac{1}{2}\varepsilon E^2Sd We=21CU2=21εE2Sd
磁通量: Φ = B ⃗ ⋅ S ⃗ = B S cos θ \Phi=\vec B\cdot\vec S=BS\cos\theta Φ=B⋅S=BScosθ
磁场的高斯定理:通过任意闭合曲面的磁通量必等于零: ∮ s B ⃗ ⋅ d S ⃗ = 0 \oint_s\vec B\cdot{\rm d}\vec S=0 ∮sB⋅dS=0
毕奥-萨伐尔定律: d B ⃗ = μ 0 4 π I d I ⃗ × e r ⃗ r 2 → B ⃗ = μ 0 I 4 π ∫ d l ⃗ × e ⃗ r r 2 d\vec B=\frac{\mu_0}{4\pi}\frac{I{\rm d}\vec I\times\vec{e_r}}{r^2}\rightarrow \vec B=\frac{\mu_0I}{4\pi}\int\frac{{\rm d}\vec l\times\vec e_r}{r^2} dB=4πμ0r2IdI×er→B=4πμ0I∫r2dl×er
安培环路定理: ∮ l B ⃗ × d l ⃗ = μ 0 ∑ i = 1 n I i \oint_l\vec B\times{\rm d}\vec l=\mu_0\sum_{i=1}^nI_i ∮lB×dl=μ0∑i=1nIi
带电粒子的磁场中的运动: q v 0 B = m v 0 2 R qv_0B=m\frac{v_0^2}{R} qv0B=mRv02
电磁感应定律: E i = − d Φ d t E_i=-\frac{{\rm d}\Phi}{{\rm d}t} Ei=−dtdΦ
楞次定律:来拒去留
动生电动势: E = ∫ O P ( v ⃗ × B ⃗ ) d l ⃗ E=\int_{OP}(\vec v\times\vec B){\rm d}\vec l E=∫OP(v×B)dl
长度的收缩: l = l 0 1 − β 2 l=l_0\sqrt{1-\beta^2} l=l01−β2
时间的延缓: Δ t = Δ t 0 1 − β 2 \Delta t=\frac{\Delta t_0}{\sqrt{1-\beta^2}} Δt=1−β2Δt0
光子能量: ε = h ν \varepsilon=h\nu ε=hν
爱因斯坦光电方程: h ν = 1 2 m v 2 + W h\nu=\frac{1}{2}mv^2+W hν=21mv2+W
德布罗意波: λ = h p = h m 0 v = h γ m 0 v \lambda=\frac{h}{p}=\frac{h}{m_0v}=\frac{h}{\gamma m_0v} λ=ph=m0vh=γm0vh
能量、动量: E = h ν , p = h λ E=h\nu,p=\frac{h}{\lambda} E=hν,p=λh
物理复习1力学
物理复习2振动、波动
物理复习3电磁学
物理复习4近代物理
物理复习5第二部分