Tensorflow+SSD+Yolo(目标检测)文章10:YOLO_v3实现视频化以及界面化和打包操作

10.YOLO_v3实现视频化以及界面化和打包操作
(写在每篇深度学习文章系列的前面,该系列的文章是我2019年做毕设时的步骤总结,是能实现的,不和其他很多博客一样瞎糊弄人浪费时间。写下这些文章一方面为了方便后来者,一方面也为了自己以后的步骤复现等。
另外,如果我给的那些参考帖子看不了了,可以到我的博客下载区那里去下载对应的压缩文件,我把里面所有的链接网页都截了长图,所以不用担心我给的参考帖子链接失效。
其次,如果我给的参考链接侵犯了该链接博主的权益,烦请告知,必当第一时间删掉。由于本人参考帖子较多,如果侵犯了请原谅,我会删掉。也谢谢各位在路上帮助过我的,谢谢了。
还有就是,如果积分太高了,请告诉我怎么把积分降低,我也不太清楚怎么弄,积分会随着下载次数增加逐渐增加。你知道的话怎么降的话可以留言给我。
emm, 最后的最后,如果你觉得这篇博文有用,请点个赞哩,感谢!~~)
(博客下载区:https://download.csdn.net/download/lininggggggg/11224800
或者在下载区搜索名字:10.YOLO_v3实现视频化以及界面化和打包操作.zip–深度学习文章10)


正文


https://blog.csdn.net/a88770202/article/details/87108823 视频的读取!!!
https://blog.csdn.net/Lay_ZRS/article/details/88549644
https://blog.csdn.net/DumpDoctorWang/article/details/80515861

一、视频的读取
如果按照之前给的yolo.py文件里的视频软件进行测试的话会发现总是测试识别不出来,这个其实有个大坑来着。
首先,都测不到,要么标记框瞎框,有的边界都溢出int了(一度怀疑人生),后来看了一篇博文说可能是opencv的图片读取BGR顺序和Image图片的RGB读取顺序不同,然后看了一下detect_video函数发现拿图片帧去处理的是Image而用cv2.show的还是Image顺序,确实没转换过去,于是百度了一波转换方法,改了改代码就可以正常识别了。修改后代码如下:即把这段代码放到yolo.py文件里的那个同样的函数的地方,之前那个删掉即可。

def detect_video(yolo, video_path, output_path=""):
    import cv2

    vid = cv2.VideoCapture(video_path)
    if not vid.isOpened():
        raise IOError("Couldn't open webcam or video")
    video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC))
    video_fps = vid.get(cv2.CAP_PROP_FPS)
    video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
                  int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
    isOutput = True if output_path != "" else False
    if isOutput:
        print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
        out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
    accum_time = 0
    curr_fps = 0
    fps = "FPS: ??"
    prev_time = timer()
    while True:
        return_value, frame = vid.read()
        image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))#Opencv转PIL
        image = yolo.detect_image(image)
        result = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)#显示的时候再PIL转回Opencv
        #
        curr_time = timer()
        exec_time = curr_time - prev_time
        prev_time = curr_time
        accum_time = accum_time + exec_time
        curr_fps = curr_fps + 1
        #
        if accum_time > 1:
            accum_time = accum_time - 1
            fps = "FPS: " + str(curr_fps)
            curr_fps = 0
        cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                    fontScale=0.50, color=(255, 0, 0), thickness=2)
        cv2.namedWindow("result", cv2.WINDOW_NORMAL)
        cv2.imshow("result", result)
        # if isOutput:
        #     out.write(result)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    yolo.close_session()

然后在该文件的末尾加上下面的代码即可运行:
加法1:(没实践过)

def detect_img(yolo):
    while True:
        img = input('Input image filename:')
        try:
            image = Image.open(img)
        except:
            print('Open Error! Try again!')
            continue
        else:
            r_image = yolo.detect_image(image)
            r_image.show()
    yolo.close_session()


if __name__ == '__main__':
    if (int(input("Please input detect_type 1->image,   2->video\n")) == 1):
        detect_img(YOLO())
    else:
        detect_video(YOLO(), input("Input video filename:\n"))

加法2:

def detect_img(yolo, img_path='test.png'):
    image = Image.open(img_path)
    import time
    t1 = time.time()

    ####
    outdir="E:\GraduationProject\Data\keras-yolo3-master5\photo/store"
    r_image = yolo.detect_image(image)
    r_image.save(os.path.join(outdir, os.path.basename(img_path)))
    ####

    print('time: {}'.format(time.time() - t1))
    r_image.show()

    # yolo.close_session()


if __name__ == '__main__':

    # 1.15,   0.24
    yolo = YOLO()

    #
    video = '.\photo/ee.mp4'
    detect_video(yolo, video, output_path="ee_result5.mp4")

    # #
    # video = ''
    # detect_video(yolo, video, output_path="ee_result8.mp4")

最后的yolo.py的最终代码如下:

# """
# Class definition of YOLO_v3 style detection model on image and video
# """
# # 我记得应该是运行yolo1才能正常运行全部功能
# import colorsys
# from timeit import default_timer as timer
#
# import numpy as np
# from keras import backend as K
# from keras.models import load_model
# from keras.layers import Input
# from PIL import Image, ImageFont, ImageDraw
#
# from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
# from yolo3.utils import letterbox_image
# import os
# from keras.utils import multi_gpu_model
#
# class YOLO(object):
#     _defaults = {
#         "model_path": 'model_data/yolo.h5',
#         "anchors_path": 'model_data/yolo_anchors.txt',
#         "classes_path": 'model_data/coco_classes.txt',
#         "score" : 0.3,
#         "iou" : 0.45,
#         "model_image_size" : (416, 416),
#         "gpu_num" : 1,
#     }
#
#     @classmethod
#     def get_defaults(cls, n):
#         if n in cls._defaults:
#             return cls._defaults[n]
#         else:
#             return "Unrecognized attribute name '" + n + "'"
#
#     def __init__(self, **kwargs):
#         self.__dict__.update(self._defaults) # set up default values
#         self.__dict__.update(kwargs) # and update with user overrides
#         self.class_names = self._get_class()
#         self.anchors = self._get_anchors()
#         self.sess = K.get_session()
#         self.boxes, self.scores, self.classes = self.generate()
#
#     def _get_class(self):
#         classes_path = os.path.expanduser(self.classes_path)
#         with open(classes_path) as f:
#             class_names = f.readlines()
#         class_names = [c.strip() for c in class_names]
#         return class_names
#
#     def _get_anchors(self):
#         anchors_path = os.path.expanduser(self.anchors_path)
#         with open(anchors_path) as f:
#             anchors = f.readline()
#         anchors = [float(x) for x in anchors.split(',')]
#         return np.array(anchors).reshape(-1, 2)
#
#     def generate(self):
#         model_path = os.path.expanduser(self.model_path)
#         assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
#
#         # Load model, or construct model and load weights.
#         num_anchors = len(self.anchors)
#         num_classes = len(self.class_names)
#         is_tiny_version = num_anchors==6 # default setting
#         try:
#             self.yolo_model = load_model(model_path, compile=False)
#         except:
#             self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
#                 if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
#             self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
#         else:
#             assert self.yolo_model.layers[-1].output_shape[-1] == \
#                 num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
#                 'Mismatch between model and given anchor and class sizes'
#
#         print('{} model, anchors, and classes loaded.'.format(model_path))
#
#         # Generate colors for drawing bounding boxes.
#         hsv_tuples = [(x / len(self.class_names), 1., 1.)
#                       for x in range(len(self.class_names))]
#         self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
#         self.colors = list(
#             map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
#                 self.colors))
#         np.random.seed(10101)  # Fixed seed for consistent colors across runs.
#         np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
#         np.random.seed(None)  # Reset seed to default.
#
#         # Generate output tensor targets for filtered bounding boxes.
#         self.input_image_shape = K.placeholder(shape=(2, ))
#         if self.gpu_num>=2:
#             self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
#         boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
#                 len(self.class_names), self.input_image_shape,
#                 score_threshold=self.score, iou_threshold=self.iou)
#         return boxes, scores, classes
#
#     def close_session(self):
#         self.sess.close()
#
#
# if __name__ == '__main__':
#
#     # #
#     # detect_img(YOLO(), img_path='.\photo/00002.jpg')
#
#     #
#     video = '.\photo/ee.mp4'
#     detect_video(YOLO(), video, output_path="ee_result5.mp4")
#
#     # #
#     # video = ''
#     # detect_video(YOLO(), video, output_path="")
#
#
#     # i = 0
#     # #
#     # path = 'E:\GraduationProject\Data\keras-yolo3-master5\pic/'
#     # if i<=11:
#     #     i += 1
#     #     image_names = os.path.join(path, i, '.jpg')
#     #     detect_img(YOLO(), img_path='image_names')  #
#     #
#
#

"""
Class definition of YOLO_v3 style detection model on image and video
"""
# 我记得应该是运行yolo1才能正常运行全部功能
import colorsys
from timeit import default_timer as timer

import numpy as np
from keras import backend as K
from keras.models import load_model
from keras.layers import Input
from PIL import Image, ImageFont, ImageDraw

from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
from yolo3.utils import letterbox_image
import os
from keras.utils import multi_gpu_model

class YOLO(object):
    _defaults = {
        "model_path": 'model_data/yolo.h5',
        "anchors_path": 'model_data/yolo_anchors.txt',
        "classes_path": 'model_data/coco_classes.txt',
        "score" : 0.3,
        "iou" : 0.45,
        "model_image_size" : (416, 416),
        "gpu_num" : 1,
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults) # set up default values
        self.__dict__.update(kwargs) # and update with user overrides
        self.class_names = self._get_class()
        self.anchors = self._get_anchors()
        self.sess = K.get_session()
        self.boxes, self.scores, self.classes = self.generate()

    def _get_class(self):
        classes_path = os.path.expanduser(self.classes_path)
        with open(classes_path) as f:
            class_names = f.readlines()
        class_names = [c.strip() for c in class_names]
        return class_names

    def _get_anchors(self):
        anchors_path = os.path.expanduser(self.anchors_path)
        with open(anchors_path) as f:
            anchors = f.readline()
        anchors = [float(x) for x in anchors.split(',')]
        return np.array(anchors).reshape(-1, 2)

    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        # Load model, or construct model and load weights.
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        is_tiny_version = num_anchors==6 # default setting
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
                if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
            self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num>=2:
            self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes

    def detect_image(self, image):
        start = timer()

        if self.model_image_size != (None, None):
            assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
            assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
            boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
        else:
            new_image_size = (image.width - (image.width % 32),
                              image.height - (image.height % 32))
            boxed_image = letterbox_image(image, new_image_size)
        image_data = np.array(boxed_image, dtype='float32')

        print(image_data.shape)
        image_data /= 255.
        image_data = np.expand_dims(image_data, 0)  # Add batch dimension.

        out_boxes, out_scores, out_classes = self.sess.run(
            [self.boxes, self.scores, self.classes],
            feed_dict={
                self.yolo_model.input: image_data,
                self.input_image_shape: [image.size[1], image.size[0]],
                K.learning_phase(): 0
            })

        print('Found {} boxes for {}'.format(len(out_boxes), 'img'))

        font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
                    size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
        thickness = (image.size[0] + image.size[1]) // 300

        for i, c in reversed(list(enumerate(out_classes))):
            predicted_class = self.class_names[c]
            box = out_boxes[i]
            score = out_scores[i]

            top, left, bottom, right = box
            top = max(0, np.floor(top + 0.5).astype('int32'))
            left = max(0, np.floor(left + 0.5).astype('int32'))
            bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
            right = min(image.size[0], np.floor(right + 0.5).astype('int32'))

            label = '{} {:.2f} '.format(predicted_class, score) + '({} {}) '.format(np.floor((top+bottom)/2+0.5).astype('int32'), np.floor((left+right)/2+0.5).astype('int32'))
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)
            print(label, (left, top), (right, bottom))

            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            # My kingdom for a good redistributable image drawing library.
            for i in range(thickness):
                draw.rectangle(
                    [left + i, top + i, right - i, bottom - i],
                    outline=self.colors[c])
            draw.rectangle(
                [tuple(text_origin), tuple(text_origin + label_size)],
                fill=self.colors[c])
            # draw.text(text_origin, label, fill=(0, 0, 0), font=font)  # fill=(0,0,0)是黑色
            draw.text(text_origin, label, fill=(255, 255, 255), font=font)  # fill=(255, 255, 255)是白色
            del draw

        end = timer()
        print(end - start)
        return image

    def close_session(self):
        self.sess.close()

def detect_video(yolo, video, output_path=""):
    import cv2

    video_path = os.path.join(video)

    if (os.path.exists(video_path) and video != ''):
        vid = cv2.VideoCapture(video_path)
    else:
        vid = cv2.VideoCapture(0)
        video = 'your_camera.mp4'


    if not vid.isOpened():
        raise IOError("Couldn't open webcam or video")
    video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC))
    video_fps = vid.get(cv2.CAP_PROP_FPS)
    video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
                  int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
    isOutput = True if output_path != "" else False
    if isOutput:
        print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
        out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
    accum_time = 0
    curr_fps = 0
    fps = "FPS: ??"
    prev_time = timer()
    while True:
        return_value, frame = vid.read()
        if frame is None:
            break
        image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        image = yolo.detect_image(image)
        result = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
        #
        curr_time = timer()
        exec_time = curr_time - prev_time
        prev_time = curr_time
        accum_time = accum_time + exec_time
        curr_fps = curr_fps + 1
        #
        if accum_time > 1:
            accum_time = accum_time - 1
            fps = "FPS: " + str(curr_fps)
            curr_fps = 0
        # cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
        #             fontScale=0.50, color=(255, 0, 0), thickness=2)
        cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                    fontScale=0.5, color=(255, 255, 255), thickness=2)  # 更改字体大小和颜色
        cv2.namedWindow("result", cv2.WINDOW_NORMAL)
        cv2.imshow("result", result)
        if isOutput:
            out.write(result)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    # yolo.close_session()


def detect_img(yolo, img_path='test.png'):
    image = Image.open(img_path)
    import time
    t1 = time.time()

    ####
    outdir="E:\GraduationProject\Data\keras-yolo3-master5\photo/store"
    r_image = yolo.detect_image(image)
    r_image.save(os.path.join(outdir, os.path.basename(img_path)))
    ####

    print('time: {}'.format(time.time() - t1))
    r_image.show()

    # yolo.close_session()


if __name__ == '__main__':

    # 1.15,   0.24
    yolo = YOLO()
    detect_img(yolo, img_path='.\photo/0.jpg')
    detect_img(yolo, img_path='.\photo/1.jpg')
    detect_img(yolo, img_path='.\photo/2.jpg')
    detect_img(yolo, img_path='.\photo/3.jpg')


    # #
    # video = '.\photo/ee.mp4'
    # detect_video(yolo, video, output_path="ee_result5.mp4")

    # #
    # video = ''
    # detect_video(yolo, video, output_path="ee_result8.mp4")


    # i = 0
    # #
    # path = 'E:\GraduationProject\Data\keras-yolo3-master5\pic/'
    # if i<=11:
    #     i += 1
    #     image_names = os.path.join(path, i, '.jpg')
    #     detect_img(yolo, img_path='image_names')  #
    #


二、pyqt5界面的搭建
较好的博文:
https://blog.csdn.net/m0_37606112/article/details/78419892 !!!
https://blog.csdn.net/weixin_41929524/article/details/81456308 !!!(该作者有四篇博文组成一个系列,都要看)

第一步,先按照博文https://blog.csdn.net/m0_37606112/article/details/78419892 !(同帖子链接4)
https://blog.csdn.net/niuyongjie/article/details/81161559
的步骤来。
(1)安装各类库pyqt5,pyqt5-tools,指令为pip install pyqt5 ;pip install pyqt5-tools
(2)进行pycharm的环境配置
打开pycharm,进入file-setting-tools-external tools。
Tensorflow+SSD+Yolo(目标检测)文章10:YOLO_v3实现视频化以及界面化和打包操作_第1张图片
(3)点击“+”号,后增加Qtdesigner、Pyuic5和Pyrcc(下面那段文字是复制的,如果看不懂可以直接和下面的三个图对比直接设置修改)
1、在增加Qtdesigner时,名称可以自己按照喜好键入,不必和exe文件保持一致。
首先需要下面第一个空格内点击“…”,按照目录找到exe文件,选中即可。这个exe文件应当在刚安装的pyqt5-tools目录下。
2、在第二个空格内,“parameters”是指exe文件执行时的参数,就是我们将要操作的文件,点击后面的“宏命令”,选择filedirfiledir f i l e n a m e , 也 就 是 我 们 将 要 操 作 的 文 件 , 则 每 次 点 击 时 都 会 打 开 所 选 中 的 u i 文 件 , 如 果 保 持 空 的 , 则 每 次 打 开 就 是 最 初 的 界 面 。 第 三 个 空 格 即 是 文 件 的 存 放 目 录 , 点 击 “ 宏 命 令 ” , 选 择 , 也 就 是 我 们 将 要 操 作 的 文 件 , 则 每 次 点 击 时 都 会 打 开 所 选 中 的 u i 文 件 , 如 果 保 持 空 的 , 则 每 次 打 开 就 是 最 初 的 界 面 。 第 三 个 空 格 即 是 文 件 的 存 放 目 录 , 点 击 “ 宏 命 令 ” , 选 择 f i l e d i r filename,也就是我们将要操作的文件,则每次点击时都会打开所选中的ui文件,如果保持空的,则每次打开就是最初的界面。第三个空格即是文件的存放目录,点击“宏命令”,选择,也就是我们将要操作的文件,则每次点击时都会打开所选中的ui文件,如果保持空的,则每次打开就是最初的界面。第三个空格即是文件的存放目录,点击“宏命令”,选择filedir filename,ui,uifiledir即可。
3、接下来增加pyuic5,首先输入名字,可以按照喜好自己确定。
第一个空格内选择pyuic5.exe文件,应该在scripts目录下,
第二个空格内的输入需要用到“宏命令”,其实就是pyuic5 file.ui -o file.py
命令的抽象。这一步和老版本存在较大的差别,在网上的诸多教程中,都是在第一个空格内填写python.exe,第二个空格内填写pyuic5 file.ui -o file.py这个命令,我尝试了不行。
第三个空格直接用宏命令即可。pyrcc的配置和pyuic的一致。
Tensorflow+SSD+Yolo(目标检测)文章10:YOLO_v3实现视频化以及界面化和打包操作_第2张图片
Tensorflow+SSD+Yolo(目标检测)文章10:YOLO_v3实现视频化以及界面化和打包操作_第3张图片
Tensorflow+SSD+Yolo(目标检测)文章10:YOLO_v3实现视频化以及界面化和打包操作_第4张图片

第二步,参考博文https://blog.csdn.net/m0_37606112/article/details/78556683
https://blog.csdn.net/niuyongjie/article/details/81161937 !!!
对里面的步骤稍微走几遍,走不通也暂时没事,知道怎么走就行。
(1)启动Pycharm,打开之前的yolo项目工程,然后点击TOOLEXTERNAL TOOL选择Qt Designer,会启动Qt Designer工具,制作界面,点击create后即可进行下一步操作。
Tensorflow+SSD+Yolo(目标检测)文章10:YOLO_v3实现视频化以及界面化和打包操作_第5张图片
(2)注意,控件的添加是通过拖过去而不是点击过去来添加的。
(3)在添加完控件后,可以对其进行相应的调整等。(有的控件可以进行界面化的编辑函数)
(4)添加控件并调整后,保存界面为mainUi.ui。即在PyCharm界面中,在mainUi.ui文件上单击鼠标右键,选择Extern tool工具中的PyUIC,将mainUI.ui转换为mainUi.py
Tensorflow+SSD+Yolo(目标检测)文章10:YOLO_v3实现视频化以及界面化和打包操作_第6张图片
(5)这些代码都是自动生成的,大家最好不需要动(因为一旦再次改动界面,如果在)。
在生成的文件中有一个Ui_MainWindow类,这个类继承自object,这个类就是一个空的类,里面什么都没有,就是提供了一个容器,在容器内部生成了一个名字叫MainWindow的对象,设置对象的大小,然后将这个对象MainWindow作为父类生成了一个子对象centralwidget。centralwidget作为这个容器类的内部成员,这个对象centralwidget就是将来程序要运行的主窗口,在这个窗口内部放置了很多的控件,具体不详细论述了。
函数retranslateUi(self, MainWindow)的主要作用是设置控件的各种属性。
(6)然后在Pycharm中添加一个新的py文件main.py,代码如下:(该代码是我改过了的)

# # import sys
# # from PyQt5 import QtWidgets
# # app = QtWidgets.QApplication(sys.argv)
# # label = QtWidgets.QLabel("hello world")
# # label.show()
# # sys.exit(app.exec_())
# # ### 简单输出一个框
#
#
#
# # from PyQt5 import QtWidgets
# # from aaa import Ui_MainWindow
# #
# # class mywindow(QtWidgets.QWidget, Ui_MainWindow):
# #     def  __init__ (self):
# #         super(mywindow, self).__init__()
# #         self.setupUi(self)
# #
# # if __name__=="__main__":
# #     import sys
# #     app=QtWidgets.QApplication(sys.argv)
# #     ui = mywindow()
# #     ui.show()
# #     sys.exit(app.exec_())
# #   ###  简单例程
#
# from PyQt5 import QtWidgets
# from aaa2 import Ui_MainWindow # 导入ui文件转换后的py文件
# from PyQt5.QtWidgets import QFileDialog
# import pandas as pd
# # from yolo import YOLO
# import os
# import colorsys
# import os
# from timeit import default_timer as timer
#
# import numpy as np
# import pandas as pd
# from keras import backend as K
# from keras.models import load_model
# from keras.layers import Input
# from PIL import Image, ImageFont, ImageDraw
#
# from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
# from yolo3.utils import letterbox_image
# import os
# from keras.utils import multi_gpu_model
# import cv2
# import colorsys
# from timeit import default_timer as timer
#
# import numpy as np
# from keras import backend as K
# from keras.models import load_model
# from keras.layers import Input
# from PIL import Image, ImageFont, ImageDraw
#
# from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
# from yolo3.utils import letterbox_image
# import os
# from keras.utils import multi_gpu_model
#
#
# class YOLO(object):
#     _defaults = {
#         "model_path": 'model_data/yolo.h5',
#         "anchors_path": 'model_data/yolo_anchors.txt',
#         "classes_path": 'model_data/coco_classes.txt',
#         "score" : 0.3,
#         "iou" : 0.45,
#         "model_image_size" : (416, 416),
#         "gpu_num" : 1,
#     }
#
#
# class mywindow(QtWidgets.QWidget, Ui_MainWindow, YOLO):
#     def  __init__ (self, **kwargs):
#         super(mywindow, self).__init__()
#         self.setupUi(self)
#         self.pushButton_2.clicked.connect(self.write_folder)
#         self.pushButton.clicked.connect(self.read_file)
#         self.ok.clicked.connect(self.process)
#         self.__dict__.update(self._defaults) # set up default values
#         self.__dict__.update(kwargs) # and update with user overrides
#         self.class_names = self._get_class()
#         self.anchors = self._get_anchors()
#         self.sess = K.get_session()
#         self.boxes, self.scores, self.classes = self.generate()
#
#     def get_defaults(cls, n):
#         if n in cls._defaults:
#             return cls._defaults[n]
#         else:
#             return "Unrecognized attribute name '" + n + "'"
#
#     def _get_class(self):
#         classes_path = os.path.expanduser(self.classes_path)
#         with open(classes_path) as f:
#             class_names = f.readlines()
#         class_names = [c.strip() for c in class_names]
#         return class_names
#
#     def _get_anchors(self):
#         anchors_path = os.path.expanduser(self.anchors_path)
#         with open(anchors_path) as f:
#             anchors = f.readline()
#         anchors = [float(x) for x in anchors.split(',')]
#         return np.array(anchors).reshape(-1, 2)
#
#     def generate(self):
#         model_path = os.path.expanduser(self.model_path)
#         assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
#
#         # Load model, or construct model and load weights.
#         num_anchors = len(self.anchors)
#         num_classes = len(self.class_names)
#         is_tiny_version = num_anchors==6 # default setting
#         try:
#             self.yolo_model = load_model(model_path, compile=False)
#         except:
#             self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
#                 if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
#             self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
#         else:
#             assert self.yolo_model.layers[-1].output_shape[-1] == \
#                 num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
#                 'Mismatch between model and given anchor and class sizes'
#
#         print('{} model, anchors, and classes loaded.'.format(model_path))
#
#         # Generate colors for drawing bounding boxes.
#         hsv_tuples = [(x / len(self.class_names), 1., 1.)
#                       for x in range(len(self.class_names))]
#         self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
#         self.colors = list(
#             map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
#                 self.colors))
#         np.random.seed(10101)  # Fixed seed for consistent colors across runs.
#         np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
#         np.random.seed(None)  # Reset seed to default.
#
#         # Generate output tensor targets for filtered bounding boxes.
#         self.input_image_shape = K.placeholder(shape=(2, ))
#         if self.gpu_num>=2:
#             self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
#         boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
#                 len(self.class_names), self.input_image_shape,
#                 score_threshold=self.score, iou_threshold=self.iou)
#         return boxes, scores, classes
#
#     def close_session(self):
#         self.sess.close()
#
#     def read_file(self):
#         # 选取文件
#         # filename, filetype =QFileDialog.getOpenFileName(self, "选取文件", "E:\GraduationProject\Data\keras-yolo3-master5/", "Python Files(*.py);;All Files(*)")
#         filename, filetype =QFileDialog.getOpenFileName(self, "选取文件", "E:\GraduationProject\Data\keras-yolo3-master5/", "Files(*.jpg);;Files(*.mp4);;All Files(*)")
#         print(filename, filetype)
#         self.lineEdit.setText(filename)
#         self.lineEdit_3.setText(filetype)
#
#     def write_folder(self):
#         #选取文件夹
#         foldername = QFileDialog.getExistingDirectory(self, "选取文件夹", "C:/")
#         print(foldername)
#         self.lineEdit_2.setText(foldername)
#
#     # 进行处理
#     def detect_image(self, image):
#         start = timer()
#
#         if self.model_image_size != (None, None):
#             assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
#             assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
#             boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
#         else:
#             new_image_size = (image.width - (image.width % 32),
#                               image.height - (image.height % 32))
#             boxed_image = letterbox_image(image, new_image_size)
#         image_data = np.array(boxed_image, dtype='float32')
#
#         print(image_data.shape)
#         image_data /= 255.
#         image_data = np.expand_dims(image_data, 0)  # Add batch dimension.
#
#         out_boxes, out_scores, out_classes = self.sess.run(
#             [self.boxes, self.scores, self.classes],
#             feed_dict={
#                 self.yolo_model.input: image_data,
#                 self.input_image_shape: [image.size[1], image.size[0]],
#                 K.learning_phase(): 0
#             })
#
#         print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
#
#         font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
#                     size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
#         thickness = (image.size[0] + image.size[1]) // 300
#
#         for i, c in reversed(list(enumerate(out_classes))):
#             predicted_class = self.class_names[c]
#             box = out_boxes[i]
#             score = out_scores[i]
#
#             top, left, bottom, right = box
#             top = max(0, np.floor(top + 0.5).astype('int32'))
#             left = max(0, np.floor(left + 0.5).astype('int32'))
#             bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
#             right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
#
#             label = '{} {:.2f} '.format(predicted_class, score) + '({} {}) '.format(np.floor((top+bottom)/2+0.5).astype('int32'), np.floor((left+right)/2+0.5).astype('int32'))
#             draw = ImageDraw.Draw(image)
#             label_size = draw.textsize(label, font)
#             print(label, (left, top), (right, bottom))
#
#             if top - label_size[1] >= 0:
#                 text_origin = np.array([left, top - label_size[1]])
#             else:
#                 text_origin = np.array([left, top + 1])
#
#             # My kingdom for a good redistributable image drawing library.
#             for i in range(thickness):
#                 draw.rectangle(
#                     [left + i, top + i, right - i, bottom - i],
#                     outline=self.colors[c])
#             draw.rectangle(
#                 [tuple(text_origin), tuple(text_origin + label_size)],
#                 fill=self.colors[c])
#             draw.text(text_origin, label, fill=(0, 0, 0), font=font)
#             del draw
#
#         end = timer()
#         print(end - start)
#         return image
#
#     def process(self):
#         try:
#             yes1 = r'运行加载中'
#             self.label_3.setText(yes1)
#             # 获取文件路径
#             file_path = self.lineEdit.text()
#             # 获取文件格式
#             file_type = self.lineEdit_3.text()
#             # 获取文件夹路径
#             folder_path = self.lineEdit_2.text()
#             if ( file_type == 'Files(*.jpg)'):
#                 img_path = file_path
#                 detect_img(YOLO(), img_path)
#                 print('111')
#             else:
#                 video = file_path
#                 detect_video(YOLO(), video, output_path=folder_path + "/ee_result7.mp4")
#                 print('000')
#             # #######################################版本1,直接运行指定路径文件
#             # # # detect_img(YOLO(), img_path=file_path)  # 检测输入图片的路径
#             # # os.system("python E:\GraduationProject\Data\keras-yolo3-master5/yolo.py")
#             #
#             # video = '.\photo/ee.mp4'
#             # detect_video(YOLO(), video, output_path="ee_result5.mp4")
#             # ##########################################
#             success_result = r'转换成功!'
#             self.label_3.setText(success_result)
#         except:
#              fail_result = r'转换失败!'
#              self.label_3.setText(fail_result)
#         # yolo.close_session()
#
#
#
# def detect_video(yolo, video, output_path=""):
#     import cv2
#
#     video_path = os.path.join(video)
#
#     if (os.path.exists(video_path) and video != ''):
#         vid = cv2.VideoCapture(video_path)
#     else:
#         vid = cv2.VideoCapture(0)
#         video = 'your_camera.mp4'
#
#     if not vid.isOpened():
#         raise IOError("Couldn't open webcam or video")
#     video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC))
#     video_fps = vid.get(cv2.CAP_PROP_FPS)
#     video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
#                   int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
#     isOutput = True if output_path != "" else False
#     if isOutput:
#         print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
#         out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
#     accum_time = 0
#     curr_fps = 0
#     fps = "FPS: ??"
#     prev_time = timer()
#     while True:
#         return_value, frame = vid.read()
#         if frame is None:
#             break
#         image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
#         image = yolo.detect_image(image)
#         result = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
#         #
#         curr_time = timer()
#         exec_time = curr_time - prev_time
#         prev_time = curr_time
#         accum_time = accum_time + exec_time
#         curr_fps = curr_fps + 1
#         #
#         if accum_time > 1:
#             accum_time = accum_time - 1
#             fps = "FPS: " + str(curr_fps)
#             curr_fps = 0
#         cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
#                     fontScale=0.50, color=(255, 0, 0), thickness=2)
#         cv2.namedWindow("result", cv2.WINDOW_NORMAL)
#         cv2.imshow("result", result)
#         if isOutput:
#             out.write(result)
#         if cv2.waitKey(1) & 0xFF == ord('q'):
#             break
#     # yolo.close_session()
#
#
# def detect_img(yolo, img_path='test.png'):
#     image = Image.open(img_path)
#     import time
#     t1 = time.time()
#
#     ####
#     outdir = "E:\GraduationProject\Data\keras-yolo3-master5\photo/store"
#     r_image = yolo.detect_image(image)
#     r_image.save(os.path.join(outdir, os.path.basename(img_path)))
#     ####
#
#     print('time: {}'.format(time.time() - t1))
#     r_image.show()
#
#     # yolo.close_session()
#
#
# if __name__=="__main__":
#     import sys
#     app=QtWidgets.QApplication(sys.argv)
#     ui = mywindow()
#     ui.show()
#     sys.exit(app.exec_())


from PyQt5 import QtWidgets
from aaa2 import Ui_MainWindow # 导入ui文件转换后的py文件
from PyQt5.QtWidgets import QFileDialog
from yolo import YOLO, detect_video, detect_img
from timeit import default_timer as timer

import numpy as np
from keras import backend as K
from PIL import Image, ImageFont, ImageDraw

from yolo3.utils import letterbox_image
import os

class mywindow(QtWidgets.QWidget, Ui_MainWindow, YOLO):
    _defaults = {
        "model_path": 'model_data/yolo.h5',
        "anchors_path": 'model_data/yolo_anchors.txt',
        "classes_path": 'model_data/coco_classes.txt',
        "score" : 0.3,
        "iou" : 0.45,
        "model_image_size" : (416, 416),
        "gpu_num" : 1,
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    def  __init__ (self):
        super(mywindow, self).__init__()
        self.setupUi(self)
        self.pushButton_2.clicked.connect(self.write_folder)
        self.pushButton.clicked.connect(self.read_file)
        self.ok.clicked.connect(self.process)

    def read_file(self):
        # 选取文件
        filename, filetype =QFileDialog.getOpenFileName(self, "选取文件", "C:/", "Files(*.jpg);;Files(*.mp4);;All Files(*)")
        print(filename, filetype)
        self.lineEdit.setText(filename)
        self.lineEdit_3.setText(filetype)

    def write_folder(self):
        #选取文件夹
        foldername = QFileDialog.getExistingDirectory(self, "选取文件夹", "C:/")
        print(foldername)
        self.lineEdit_2.setText(foldername)

    # 进行处理
    def process(self):
        # yolo = YOLO()
        yes1 = r'运行加载中'
        self.label_3.setText(yes1)
        try:
            # 获取文件路径
            file_path = self.lineEdit.text()
            # 获取文件格式
            file_type = self.lineEdit_3.text()
            # 获取文件夹路径
            folder_path = self.lineEdit_2.text()
            if ( file_type == 'Files(*.jpg)'):
                print('图片识别')
                img_path = file_path
                detect_img(yolo, img_path)
            else:
                print('视频识别')
                video = file_path
                detect_video(yolo, video, output_path=folder_path + "/ee_result7.mp4")
            # #######################################版本1,直接运行指定路径文件
            # # # detect_img(yolo, img_path=file_path)  # 检测输入图片的路径
            # # os.system("python E:\GraduationProject\Data\keras-yolo3-master5/yolo.py")
            #
            # video = '.\photo/ee.mp4'
            # detect_video(yolo, video, output_path="ee_result5.mp4")
            # ##########################################
            success_result = r'转换成功!'
            self.label_3.setText(success_result)
        except:
             fail_result = r'转换失败!'
             self.label_3.setText(fail_result)
        # yolo.close_session()


if __name__=="__main__":
    import sys
    yolo = YOLO()
    app=QtWidgets.QApplication(sys.argv)
    ui = mywindow()
    ui.show()
    sys.exit(app.exec_())


第三步,按照该作者的几篇一个系列的博文一路走下来即可!!!
https://blog.csdn.net/weixin_41929524/article/details/81456308
https://blog.csdn.net/weixin_41929524/article/details/81460203
https://blog.csdn.net/weixin_41929524/article/details/81475935
https://blog.csdn.net/weixin_41929524/article/details/81484806 (编写打包的代码)
(注意,本电脑的环境有些混乱,所以打包时是通过新建的另一个虚拟环境来实现的)

补充的参考博文
https://www.jianshu.com/p/094928ac0b73
https://blog.csdn.net/sunshinezhihuo/article/details/80942993

三、打包项目文件
第一步,先安装pyinstaller 指令为 pip install PyInstaller
安装完后在cmd中输入pyinstaller指令,如果出现下图则说明安装工具包成功。
Tensorflow+SSD+Yolo(目标检测)文章10:YOLO_v3实现视频化以及界面化和打包操作_第7张图片

第二步,进行封装
在cmd中cd到主目录下,输入pyinstaller -F -w main3_2.py指令,其中的main3_2.py是依据自己的实际文件命名来的。

这里解释一下-F与-w的含义:
-F:将所有内容全部打包成一个exe可执行文件,而不会有其它的一些奇奇怪怪的小依赖文件。
-w:运行生成的exe文件时,不会弹出命令行窗口,而是直接弹出我们做的GUI。
运行完之后,桌面上就会弹出一个dist文件夹,然后里面就是一个exe文件了。将该文件复制到主目录下即可直接运行。

你可能感兴趣的:(Tensorflow+SSD+Yolo(目标检测)文章10:YOLO_v3实现视频化以及界面化和打包操作)