- 深度学习模型表征提取全解析
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython深度学习人工智能pythonembedding语言模型
模型内部进行表征提取的方法在自然语言处理(NLP)中,“表征(Representation)”指将文本(词、短语、句子、文档等)转化为计算机可理解的数值形式(如向量、矩阵),核心目标是捕捉语言的语义、语法、上下文依赖等信息。自然语言表征技术可按“静态/动态”“有无上下文”“是否融入知识”等维度划分一、传统静态表征(无上下文,词级为主)这类方法为每个词分配固定向量,不考虑其在具体语境中的含义(无法解
- 【AI大模型】LLM模型架构深度解析:BERT vs. GPT vs. T5
我爱一条柴ya
学习AI记录ai人工智能AI编程python
引言Transformer架构的诞生(Vaswanietal.,2017)彻底改变了自然语言处理(NLP)。在其基础上,BERT、GPT和T5分别代表了三种不同的模型范式,主导了预训练语言模型的演进。理解它们的差异是LLM开发和学习的基石。一、核心架构对比特性BERT(BidirectionalEncoder)GPT(GenerativePre-trainedTransformer)T5(Text
- NLP_知识图谱_大模型——个人学习记录
macken9999
自然语言处理知识图谱大模型自然语言处理知识图谱学习
1.自然语言处理、知识图谱、对话系统三大技术研究与应用https://github.com/lihanghang/NLP-Knowledge-Graph深度学习-自然语言处理(NLP)-知识图谱:知识图谱构建流程【本体构建、知识抽取(实体抽取、关系抽取、属性抽取)、知识表示、知识融合、知识存储】-元気森林-博客园https://www.cnblogs.com/-402/p/16529422.htm
- 数据安全审计平台的三大关键技术:日志分析、行为监测与智能告警
KKKlucifer
安全算法
在数字化浪潮中,数据安全审计是企业守护核心资产的“瞭望塔”。通过日志分析、行为监测、智能告警三大技术,数据安全审计平台构建起“全流程监控-异常识别-快速响应”的闭环,为数据安全筑牢防线。以下从技术原理、实践价值与行业应用展开解析。日志分析:数据安全的“DNA图谱”1.多源日志融合技术实现:通过Agent采集操作系统、数据库、网络设备等200+日志源,利用正则表达式、NLP技术解析非结构化日志(如“
- 【论文阅读笔记】TimesURL: Self-supervised Contrastive Learning for Universal Time Series
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
TimesURL:Self-supervisedContrastiveLearningforUniversalTimeSeriesRepresentationLearning摘要 学习适用于多种下游任务的通用时间序列表示,并指出这在实际应用中具有挑战性但也是有价值的。最近,研究人员尝试借鉴自监督对比学习(SSCL)在计算机视觉(CV)和自然语言处理(NLP)中的成功经验,以解决时间序列表示的问题。
- NLP-D7-李宏毅机器学习---X-Attention&&GAN&BERT&GPT
甄小胖
机器学习自然语言处理机器学习bert
—0521今天4:30就起床了!真的是迫不及待想看新的课程!!!昨天做人脸识别系统的demo查资料的时候,发现一个北理的大四做cv的同学,差距好大!!!我也要努力呀!!不是比较,只是别人可以做到这个程度,我也一定可以!!!要向他学习!!!开始看课程啦!-----0753看完了各种attention,由于attention自己计算的限制,当N很大的时候会产生计算速度问题,从各种不同角度(人工知识输入
- PyTorch 在 Python 自然语言处理中的运用
Python编程之道
Python编程之道pythonpytorch自然语言处理ai
PyTorch在Python自然语言处理中的运用关键词:PyTorch,Python,自然语言处理,深度学习,文本分类,情感分析摘要:本文全面探讨了PyTorch在Python自然语言处理(NLP)领域的运用。首先介绍了相关背景知识,包括目的范围、预期读者等内容。接着详细阐述了核心概念,如词嵌入、循环神经网络等,并给出了相应的原理示意图和流程图。深入讲解了核心算法原理,结合Python代码进行详细
- VIT视觉
妄想成为master
opencv目标检测机器学习数据挖掘语音识别人工智能计算机视觉
VisionTransformer视觉和语言(Vision-Language)NLPrompt:Noise-LabelPromptLearningforVision-LanguageModelsPaper:https://arxiv.org/abs/2412.01256Code:GitHub-qunovo/NLPromptPhysVLM:EnablingVisualLanguageModelsto
- RAG实战指南 Day 11:文本分块策略与最佳实践
在未来等你
RAG实战指南RAG检索增强生成文本分块语义分割文档处理NLP人工智能
【RAG实战指南Day11】文本分块策略与最佳实践文章标签RAG,检索增强生成,文本分块,语义分割,文档处理,NLP,人工智能,大语言模型文章简述文本分块是RAG系统构建中的关键环节,直接影响检索准确率。本文深入解析5种主流分块技术:1)固定大小分块的实现与调优技巧;2)基于语义的递归分割算法;3)文档结构感知的分块策略;4)LLM增强的智能分块方法;5)多模态混合内容处理方案。通过电商知识库和科
- 中文大模型的技术债问题
大鹏的NLP博客
大模型transformer大模型
中文大模型的技术债问题摘要随着中文大语言模型(LargeLanguageModels,LLMs)在自然语言处理(NLP)领域的广泛应用,其研发和部署过程中积累的“技术债”(TechnicalDebt)问题日益突出。本文系统性地分析了中文大模型在数据采集、预训练、微调、评估与部署等生命周期各阶段产生的技术债类型,包括代码复杂性、数据隐患、训练流程依赖、工具链碎片化、模型解释性差、隐性资源耦合等问题,
- AI 正在深度重构软件开发的底层逻辑和全生命周期,从技术演进、流程重构和未来趋势三个维度进行系统性分析
AI正在深度重构软件开发的底层逻辑和全生命周期,从需求分析到运维维护的每个环节都产生了范式级变革。以下从技术演进、流程重构和未来趋势三个维度进行系统性分析:一、AI重构软件开发全栈的技术图谱需求工程智能化NLP驱动的需求解析:GPT-4架构实现用户访谈转录自动转化为UML用例图,准确率达89%(微软2023内部数据)情感计算应用:基于BERT的意图识别模型可捕捉用户需求中的隐性情绪,需求变更预测准
- 新手向:中文语言识别的进化之路
自然语言处理(NLP)技术正在以前所未有的速度改变我们与机器的交互方式,而中文作为世界上使用人数最多的语言,其处理技术面临着独特的挑战与机遇。本文将全面剖析中文自然语言识别模型的发展历程、核心技术原理、当前应用现状以及未来发展趋势,带您深入了解这一改变人机交互方式的关键技术。一、中文NLP的特殊挑战:为什么中文处理如此困难?中文自然语言处理面临着一系列西方语言所不具备的特殊挑战,这些挑战直接影响了
- 深入详解 AI 与深度学习:从零开始掌握 BERT 模型架构
拉不拉斯AICoding
技术探索人工智能深度学习bert
深入详解AI与深度学习:从零开始掌握BERT模型架构引言在自然语言处理(NLP)领域,BERT(BidirectionalEncoderRepresentationsfromTransformers)是近年来最具影响力的模型之一。它通过双向上下文理解彻底改变了NLP任务的处理方式。本文将从基础概念到核心原理、应用场景和实践技巧,深入浅出地讲解BERT,帮助初学者快速掌握这一技术。一、BERT的核心
- Transformer模型架构深度讲解
Transformer是一种在自然语言处理(NLP)和深度学习中非常重要的模型架构。它首次由Vaswani等人于2017年提出,主要应用于序列到序列的任务(如机器翻译、文本生成、摘要生成等)。Transformer模型与传统的RNN(循环神经网络)和LSTM(长短时记忆网络)不同,它不依赖于时间步的顺序处理,而是完全基于“注意力机制”进行计算,这使得它在训练速度、并行化能力和长期依赖问题的处理上具
- AI人工智能浪潮中,GPT的技术优势凸显
AI学长带你学AI
人工智能gptai
AI人工智能浪潮中,GPT的技术优势凸显关键词:人工智能、GPT、自然语言处理、深度学习、Transformer、大语言模型、技术优势摘要:本文深入探讨了在人工智能浪潮中GPT(GenerativePre-trainedTransformer)系列模型的技术优势。我们将从GPT的核心架构出发,分析其独特的技术特点,包括自注意力机制、预训练-微调范式、零样本学习能力等。通过与传统NLP方法的对比,揭
- 自然语言处理-基于预训练模型的方法-笔记
自然语言处理-基于预训练模型的方法-笔记【下载地址】自然语言处理-基于预训练模型的方法-笔记《自然语言处理-基于预训练模型的方法》由哈尔滨工业大学出版,深入探讨了NLP领域的前沿技术与预训练模型的应用。本书系统介绍了预训练模型的基本概念、发展历程及常见模型的原理,并通过丰富的实践案例与代码实现,帮助读者掌握这些技术在自然语言处理任务中的实际应用。无论是初学者、研发人员,还是希望提升NLP能力的研究
- 大语言模型应用指南:ReAct 框架
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
大语言模型应用指南:ReAct框架关键词:大语言模型,ReAct框架,自然语言处理(NLP),模型融合,多模态学习,深度学习,深度学习框架1.背景介绍1.1问题由来近年来,深度学习技术在自然语言处理(NLP)领域取得了显著进展。尤其是大语言模型(LargeLanguageModels,LLMs),如BERT、GPT系列等,通过在大规模无标签数据上进行预训练,获得了强大的语言理解和生成能力。然而,预
- 大语言模型原理基础与前沿 基于语言反馈进行微调
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿基于语言反馈进行微调作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进展。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等在各项NLP任务上取得了令人瞩目的成绩。然而,如何进一步提高大语言模型的理
- 从新闻到知识图谱:用大模型和知识工程“八步成诗”打造科技并购大脑
许泽宇的技术分享
知识图谱科技人工智能
一句话摘要:本文带你用现代NLP和知识图谱技术,把科技公司并购新闻变成结构化的知识大脑,过程全景揭秘,理论与实战齐飞,代码只用伪代码,干货与段子齐发,助你成为AI知识工程老司机!前言:为什么要把新闻变成知识图谱?想象一下,你是个投资分析师,老板让你一周内梳理全球科技并购大事件,找出谁在买谁、花了多少钱、背后有哪些大佬、涉及哪些新技术……你会怎么做?A.手动Ctrl+F,Excel狂敲,熬夜爆肝?B
- Longformer: The Long-Document Transformer(2020-4-10)
不负韶华ღ
深度学习(NLP)transformer深度学习人工智能
模型介绍目前基于Transformer的预训练模型在各项NLP任务纷纷取得更好的效果,这些成功的部分原因在于Self-Attention机制,它运行模型能够快速便捷地从整个文本序列中捕获重要信息。然而传统的Self-Attention机制的时空复杂度与文本的序列长度呈平方的关系,这在很大程度上限制了模型的输入不能太长,因此需要将过长的文档进行截断传入模型进行处理,例如BERT中能够接受的最大序列长
- 搜索架构中的NLP技术:提升搜索准确性的关键
搜索引擎技术
架构自然语言处理人工智能ai
搜索架构中的NLP技术:提升搜索准确性的关键关键词:搜索架构、NLP技术、查询理解、语义搜索、相关性排序、意图识别、BERT模型摘要:本文将深入探讨现代搜索架构中NLP技术的核心应用,从查询理解到结果排序的全流程,揭示NLP如何提升搜索准确性。我们将通过生动的比喻解释复杂概念,分析关键技术原理,并提供实际代码示例,帮助读者全面理解搜索系统背后的NLP魔法。背景介绍目的和范围本文旨在解析NLP技术在
- 探索AI人工智能医疗NLP实体识别系统的架构设计
AI学长带你学AI
人工智能自然语言处理easyuiai
探索AI人工智能医疗NLP实体识别系统的架构设计关键词:人工智能、医疗NLP、实体识别、系统架构、深度学习、自然语言处理、医疗信息化摘要:本文将深入探讨医疗领域NLP实体识别系统的架构设计。我们将从基础概念出发,逐步解析医疗文本处理的特殊性,详细介绍实体识别技术的核心原理,并通过实际案例展示如何构建一个高效可靠的医疗实体识别系统。文章还将探讨当前技术面临的挑战和未来发展方向,为医疗AI领域的从业者
- RNN案例人名分类器(完整步骤)
AI扶我青云志
rnn人工智能深度学习nlplstmgru
今天给大家分享一个NLP(自然语言处理)中的一个小案例,本案例讲解了RNN、LSTM、GRU模型是如何使用并进行预测的,一、案例架构人名分类器的实现可分为以下五个步骤:第一步:导入必备的工具包第二步:对data文件中的数据进行处理,满足训练要求第三步:构建RNN模型(包括传统RNN,LSTM以及GRU)第四步:构建训练函数并进行训练五步第:构建评估函数并进行预测二、实现步骤1.导包#导入torch
- 【论文笔记】RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
AustinCyy
论文笔记论文阅读
论文信息论文标题:RAGLAB:AModularandResearch-OrientedUnifiedFrameworkforRetrieval-AugmentedGeneration-EMNLP24论文作者:XuanwangZhang-NanjingUniversity论文链接:https://arxiv.org/abs/2408.11381代码链接:https://github.com/fat
- happy-llm 第一章 NLP 基础概念
weixin_38374194
自然语言处理人工智能学习
文章目录一、什么是NLP?二、NLP发展三大阶段三、NLP核心任务精要四、文本表示演进史1.传统方法:统计表征2.神经网络:语义向量化课程地址:happy-llmNLP基础概念一、什么是NLP?核心目标:让计算机理解、生成、处理人类语言,实现人机自然交互。现状与挑战:成就:深度学习推动文本分类、翻译等任务达到近人类水平。瓶颈:歧义性、隐喻理解、跨文化差异等。二、NLP发展三大阶段时期代表技术核心思
- 【AI】大语言模型(LLM)& NLP
G皮T
#大语言模型LLMNLP大模型大语言模型AI人工智能
大语言模型(LLM)&NLP1.大语言模型(LLM)1.1一句话解释1.2更形象的比喻1.3为什么叫“大”模型1.4它能做什么1.5现实中的例子2.对比NLP2.1用“汽车进化”比喻NLP→LLM2.2为什么说LLM属于NLP2.3LLM的“革命性突破”在哪里2.4总结1.大语言模型(LLM)1.1一句话解释大语言模型(LargeLanguageModel,LLM)是一个“超级文字预测器”,它通过
- 使用Python爬虫与自然语言处理技术抓取并分析网页内容
Python爬虫项目
python爬虫自然语言处理javascript数据分析人工智能
1.引言在如今数据驱动的时代,网页爬虫(WebScraping)和自然语言处理(NLP)已成为处理大量网页数据的重要工具。利用Python爬虫抓取网页内容,结合NLP技术进行文本分析和信息抽取,能够从大量网页中提取有价值的信息。无论是新闻文章的情感分析、社交媒体的舆情分析,还是电商网站的商品评论挖掘,这些技术都发挥着至关重要的作用。本文将介绍如何利用Python爬虫与自然语言处理技术抓取并分析网页
- 计算机视觉中的Transformer:ViT模型详解与代码实现
AI大模型应用工坊
计算机视觉transformer人工智能ai
计算机视觉中的Transformer:ViT模型详解与代码实现关键词:计算机视觉、Transformer、ViT、自注意力机制、图像分块摘要:传统卷积神经网络(CNN)统治计算机视觉领域多年,但2020年一篇《AnImageisWorth16x16Words:TransformersforImageRecognitionatScale》的论文打破了这一格局——它将NLP领域的Transformer
- AI 加持下的智能家居行业:变革、挑战与机遇
低代码老李
人工智能智能家居
在当今科技迅猛发展的浪潮中,人工智能(AI)已深深融入智能家居领域,成为推动其蓬勃发展的关键力量,为人们的生活带来了诸多便利和创新体验,同时也面临着一系列亟待解决的问题。一、AI驱动的智能家居功能升级(1)智能语音交互与控制智能语音助手作为智能家居的核心交互方式,借助自然语言处理(NLP)技术,让用户仅通过简单的语音指令,就能轻松操控家中各类智能设备,如精准控制灯光的开关与亮度调节、窗帘的开合、电
- NLTK库全解析:用Python打开自然语言处理的第一把钥匙
引言你是否好奇过,手机里的智能助手是如何“听懂”你说的话?电商平台的差评分析又是怎样精准提取“物流慢”“质量差”这些关键词?这些看似神奇的自然语言处理(NLP)功能,背后都藏着一个“入门神器”——NLTK(NaturalLanguageToolkit)。作为Python生态中最经典的NLP库,NLTK就像一本“NLP百科全书”,从最基础的文本拆分到复杂的语义理解,它用简单的代码接口,带我们推开自然
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本