python归一化多维数组的方法

python归一化多维数组的方法

原创  2018-04-09 11:38:10 01446

赞助会员专享特权

本篇文章给大家分享的内容是python归一化多维数组的方法 ,具有一定的参考价值,有需要的朋友参考一下

 

今天遇到需要归一化多维数组的问题,但是在网上查阅了很多资料都是归一化数组的一行或者一列,对于怎么归一化一个多维数组的资料比较少,可是在tensorflow中为了训练神经网络常常需要用到多维数据。因此归一化多维数组非常有必要。

在查阅了大量资料之后发现在sklearn库中的preprocessing可以直接归一化多维数组。

1、使用sklearn.preprocessing.scale()函数,对给定数据进行标准化:具体公式是(x - mean)/std。其含义是:对每一列的数据减去这一列的均值,然后除以这一列数据的标准差。最终得到的数据都在0附近,方差为1。具体程序示例如下:

1

2

3

from sklearn import preprocessing

 

data_normal = preprocessing.scale(data)#data是多维数据

2、使用sklearn.preprocessing.StandardScaler类,这个类可以计算每一列数据的均值和方差,并根据均值和方差直接把原始数据归一化。简单示例如下:

1

2

3

4

5

6

7

8

9

10

11

12

from sklearn import preprocessing

 

#计算原始数据每行和每列的均值和方差,data是多维数据

scaler = preprocessing.StandardScaler().fit(data)

#得到每列的平均值,是一维数组

mean = scaler.mean_

#得到每列的标准差,是一维数组  

std = scaler.std_                                       

#标准化数据

data_nomal = scaler.transform(data)   

#可以直接使用训练集对测试集数据进行转换 

scaler.transform([[-1.,  1., 0.]])

3、sklearn.preprocessing.MinMaxScaler类把数据缩放到一个指定的范围。具体示例如下:

1

2

3

4

5

6

7

8

9

10

11

from sklearn import preprocessing

 

min_max_scaler = preprocessing.MinMaxScaler()

#标准化训练集数据

data_train_nomal = min_max_scaler.fit_transform(data_train)

  

#对测试集数据进行相同的归一化处理

data_test_minmax = min_max_scaler.transform(data_test)

#获取缩放因子属性,结果是一维数组

min_max_scaler.scale_                            

min_max_scaler.min_

4、附sklearn.preprocessing还可以做正则化

(1)preprocessing.normalize()对数据做正则化转换

1

data_normalized = preprocessing.normalize(data, norm='l2')

(2)preprocessing.Normalizer()先拟合数据再对数据进行正则化变换

1

2

normalizer = preprocessing.Normalizer().fit(data)  #拟合原始数据,data是多维数组

normalizer.transform(data) #正则化

 

相关推荐:

python字符串如何转为二维数组

python分治法求二维数组局部峰值方法_python

 

以上就是python归一化多维数组的方法 的详细内容,更多请关注php中文网其它相关文章!

 

文章来源:http://www.php.cn/python-tutorials-391901.html

你可能感兴趣的:(LSTM,机器学习,RNN)