Floyd最短路算法

此算法由Robert W. Floyd(罗伯特·弗洛伊德)于1962年发表在“Communications of the ACM”上。同年Stephen Warshall(史蒂芬·沃舍尔)也独立发表了这个算法。Robert W.Floyd这个牛人是朵奇葩,他原本在芝加哥大学读的文学,但是因为当时美国经济不太景气,找工作比较困难,无奈之下到西屋电气公司当了一名计算机操作员,在IBM650机房值夜班,并由此开始了他的计算机生涯。

Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似,用于求每一对顶点的最短路径。有向图无向图均可,也可以有负权边。

Floyd最短路算法_第1张图片

暑假,小哼准备去一些城市旅游。有些城市之间有公路,有些城市之间则没有,如左图。为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程。

上图中有4个城市8条公路,公路上的数字表示这条公路的长短。请注意这些公路是单向的。我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径。这个问题这也被称为“多源最短路径”问题。

现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储。比如1号城市到2号城市的路程为2,则设e[1][2]的值为2。2号城市无法到达4号城市,则设置e[2][4]的值为∞。另外此处约定一个城市自己是到自己的也是0,例如e[1][1]为0

Floyd最短路算法_第2张图片Floyd最短路算法_第3张图片

现在问题来了如何求任意两点之间的最短路径呢?

如果求任意两点之间的最短路径,两点之间可以直接到达但却不是最短的路径,要让任意两点(例如从顶点a点到顶点b)之间的路程变短,只能引入第三个点(顶点k),并通过这个顶点k中转即a->k->b,才可能缩短原来从顶点a点到顶点b的路程。那么这个中转的顶点k是1~n中的哪个点呢?甚至有时候不只通过一个点,而是经过两个点或者更多点中转会更短。比如上图中从4号城市到3号城市(4->3)的路程e[4][3]原本是12。如果只通过1号城市中转(4->1->3),路程将缩短为11(e[4][1]+e[1][3]=5+6=11)。其实1号城市到3号城市也可以通过2号城市中转,使得1号到3号城市的路程缩短为5(e[1][2]+e[2][3]=2+3=5)。所以如果同时经过1号和2号两个城市中转的话,从4号城市到3号城市的路程会进一步缩短为10。通过这个的例子,我们发现每个顶点都有可能使得另外两个顶点之间的路程变短。好,下面我们将这个问题一般化。

当任意两点之间不允许经过第三个点时,这些城市之间最短路程就是初始路程

Floyd最短路算法_第4张图片

在只允许经过1号顶点的情况下,任意两点之间的最短路程更新为:

Floyd最短路算法_第5张图片

在只允许经过1号顶点的情况下,只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。

for(i=1;i<=n;i++)   
{   
    for(j=1;j<=n;j++)   
    {   
      if ( e[i][j] > e[i][1]+e[1][j] )   
      e[i][j] = e[i][1]+e[1][j];   
    }   
} 

接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。如何做呢?我们需要在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,在只允许经过1和2号顶点的情况下,任意两点之间的最短路程更新为:

Floyd最短路算法_第6张图片

判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。

//经过1号顶点   
for(i=1;i<=n;i++)   
   for(j=1;j<=n;j++)   
 if (e[i][j] > e[i][1]+e[1][j]) 
 e[i][j]=e[i][1]+e[1][j];   
//经过2号顶点   
for(i=1;i<=n;i++)   
    for(j=1;j<=n;j++)   
 if (e[i][j] > e[i][2]+e[2][j])  
e[i][j]=e[i][2]+e[2][j]; 

同理,继续在只允许经过1、2和3号顶点进行中转的情况下,求任意两点之间的最短路程。任意两点之间的最短路程更新为:

Floyd最短路算法_第7张图片

最后允许通过所有顶点作为中转,任意两点之间最终的最短路程为:

Floyd最短路算法_第8张图片

整个算法过程虽然说起来很麻烦,但是代码实现却非常简单,核心代码只有五行:

for(k=1;k<=n;k++)   
    for(i=1;i<=n;i++)   
 for(j=1;j<=n;j++)   
     if(e[i][j]>e[i][k]+e[k][j])   
   e[i][j]=e[i][k]+e[k][j]; 
另外需要注意的是:Floyd算法不能解决带有“负权回路”(或者叫“负权环”)的图,因为带有“负权回路”的图没有最短路。例如下面这个图就不存在1号顶点到3号顶点的最短路径。因为1->2->3->1->2->3->…->1->2->3这样路径中,每绕一次1->-2>3这样的环,最短路就会减少1,永远找不到最短路。其实如果一个图中带有“负权回路”那么这个图则没有最短路。

Floyd最短路算法_第9张图片

Floyd优缺点分析

优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单。
缺点:时间复杂度比较高(n3),不适合计算大量数据。

Floyd算法与Dijkstra算法的不同

1.Floyd算法是求任意两点之间的距离,是多源最短路,而Dijkstra(迪杰斯特拉)算法是求一个顶点到其他所有顶点的最短路径,是单源最短路。
2.Floyd算法可以算带负权的,而Dijkstra(迪杰斯特拉)算法是不可以算带负权的。并且Floyd算法不能算负权回路。
3.Dijkstra(迪杰斯特拉)算法时间复杂度一般是o(n^2),Floyd算法时间复杂度是o(n^3),Dijkstra(迪杰斯特拉)算法比Floyd算法块。
4.Floyd算法属于动态规划,Dijkstra(迪杰斯特拉)算法属于贪心算法。

#include   
int main()   
{   
    int e[10][10];
	int k,i,j,n,m,t1,t2,t3   
    int inf=99999999;//用inf(infinity的缩写)存储一个我们认为的正无穷值   
    scanf("%d %d",&n,&m);//读入n和m,n表示顶点个数,m表示边的条数   
    //初始化   
    for(i=1;i<=n;i++)   
    {
    for(j=1;j<=n;j++)   
     {
      if(i==j) 
	  e[i][j]=0;   
      else 
      e[i][j]=inf;   
	 }
	}
    //读入边   
    for(i=1;i<=m;i++)   
    {   
    scanf("%d %d %d",&t1,&t2,&t3);   
    e[t1][t2]=t3;   
    }   
    //Floyd算法核心部分 
    for(k=1;k<=n;k++)   
    for(i=1;i<=n;i++)   
    for(j=1;j<=n;j++)   
    if(e[i][j]>e[i][k]+e[k][j])   
    e[i][j]=e[i][k]+e[k][j];   
    //输出最终的结果   
    for(i=1;i<=n;i++)   
    {   
     for(j=1;j<=n;j++)   
     {   
     printf("%10d",e[i][j]);   
     }   
     printf("\n");   
    }   
    return 0;   
} 


你可能感兴趣的:(知识点总结)