Android 7.1 触摸事件代码跟踪
rk3288 + Android 7.1
|-- frameworks/base/services/core/java/com/android/server/input/InputManagerService.java
public InputManagerService(Context context) {
this.mContext = context;
this.mHandler = new InputManagerHandler(DisplayThread.get().getLooper());
mUseDevInputEventForAudioJack =
context.getResources().getBoolean(R.bool.config_useDevInputEventForAudioJack);
Slog.i(TAG, "Initializing input manager, mUseDevInputEventForAudioJack="
+ mUseDevInputEventForAudioJack);
mPtr = nativeInit(this, mContext, mHandler.getLooper().getQueue());
String doubleTouchGestureEnablePath = context.getResources().getString(
R.string.config_doubleTouchGestureEnableFile);
mDoubleTouchGestureEnableFile = TextUtils.isEmpty(doubleTouchGestureEnablePath) ? null :
new File(doubleTouchGestureEnablePath);
LocalServices.addService(InputManagerInternal.class, new LocalService());
}
public void start() {
Slog.i(TAG, "Starting input manager");
nativeStart(mPtr);
// Add ourself to the Watchdog monitors.
Watchdog.getInstance().addMonitor(this);
registerPointerSpeedSettingObserver();
registerShowTouchesSettingObserver();
registerAccessibilityLargePointerSettingObserver();
mContext.registerReceiver(new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {
updatePointerSpeedFromSettings();
updateShowTouchesFromSettings();
updateAccessibilityLargePointerFromSettings();
}
}, new IntentFilter(Intent.ACTION_USER_SWITCHED), null, mHandler);
updatePointerSpeedFromSettings();
updateShowTouchesFromSettings();
updateAccessibilityLargePointerFromSettings();
}
|-- frameworks/base/services/core/jni/Android.mk
LOCAL_SHARED_LIBRARIES += \
libandroid_runtime \
libandroidfw \
libbinder \
libcutils \
liblog \
libhardware \
libhardware_legacy \
libkeystore_binder \
libnativehelper \
libutils \
libui \
libinput \
libinputflinger \
libinputservice \
libsensorservice \
libskia \
libgui \
libusbhost \
libsuspend \
libEGL \
libGLESv2 \
libnetutils \
libdrm \
libsync \
|-- frameworks/base/services/core/jni/com_android_server_input_InputManagerService.cpp
#include
static jlong nativeInit(JNIEnv* env, jclass /* clazz */,
jobject serviceObj, jobject contextObj, jobject messageQueueObj) {
sp<MessageQueue> messageQueue = android_os_MessageQueue_getMessageQueue(env, messageQueueObj);
if (messageQueue == NULL) {
jniThrowRuntimeException(env, "MessageQueue is not initialized.");
return 0;
}
NativeInputManager* im = new NativeInputManager(contextObj, serviceObj,
messageQueue->getLooper());
im->incStrong(0);
return reinterpret_cast<jlong>(im);
}
static void nativeStart(JNIEnv* env, jclass /* clazz */, jlong ptr) {
NativeInputManager* im = reinterpret_cast<NativeInputManager*>(ptr);
status_t result = im->getInputManager()->start();
if (result) {
jniThrowRuntimeException(env, "Input manager could not be started.");
}
}
NativeInputManager::NativeInputManager(jobject contextObj,
jobject serviceObj, const sp<Looper>& looper) :
mLooper(looper), mInteractive(true) {
JNIEnv* env = jniEnv();
mContextObj = env->NewGlobalRef(contextObj);
mServiceObj = env->NewGlobalRef(serviceObj);
{
AutoMutex _l(mLock);
mLocked.systemUiVisibility = ASYSTEM_UI_VISIBILITY_STATUS_BAR_VISIBLE;
mLocked.pointerSpeed = 0;
mLocked.pointerGesturesEnabled = true;
mLocked.showTouches = false;
mLocked.hardwareRotation = 0;
char property[PROPERTY_VALUE_MAX];
if (property_get("ro.sf.hwrotation", property, "0") > 0) {
mLocked.hardwareRotation = atoi(property) / 90;
}
}
mInteractive = true;
sp<EventHub> eventHub = new EventHub();
mInputManager = new InputManager(eventHub, this, this);
}
|-- frameworks/native/services/inputflinger/InputManager.cpp
InputManager::InputManager(
const sp<EventHubInterface>& eventHub,
const sp<InputReaderPolicyInterface>& readerPolicy,
const sp<InputDispatcherPolicyInterface>& dispatcherPolicy) {
mDispatcher = new InputDispatcher(dispatcherPolicy);
mReader = new InputReader(eventHub, readerPolicy, mDispatcher);
initialize();
}
InputManager::InputManager(
const sp<InputReaderInterface>& reader,
const sp<InputDispatcherInterface>& dispatcher) :
mReader(reader),
mDispatcher(dispatcher) {
initialize();
}
void InputManager::initialize() {
mReaderThread = new InputReaderThread(mReader);
mDispatcherThread = new InputDispatcherThread(mDispatcher);
}
status_t InputManager::start() {
status_t result = mDispatcherThread->run("InputDispatcher", PRIORITY_URGENT_DISPLAY);
if (result) {
ALOGE("Could not start InputDispatcher thread due to error %d.", result);
return result;
}
result = mReaderThread->run("InputReader", PRIORITY_URGENT_DISPLAY);
if (result) {
ALOGE("Could not start InputReader thread due to error %d.", result);
mDispatcherThread->requestExit();
return result;
}
return OK;
}
status_t InputManager::stop() {
status_t result = mReaderThread->requestExitAndWait();
if (result) {
ALOGW("Could not stop InputReader thread due to error %d.", result);
}
result = mDispatcherThread->requestExitAndWait();
if (result) {
ALOGW("Could not stop InputDispatcher thread due to error %d.", result);
}
return OK;
}
|-- frameworks/native/services/inputflinger/InputReader.cpp
bool InputReaderThread::threadLoop() {
mReader->loopOnce();
return true;
}
void InputReader::loopOnce() {
int32_t oldGeneration;
int32_t timeoutMillis;
bool inputDevicesChanged = false;
Vector<InputDeviceInfo> inputDevices;
{ // acquire lock
AutoMutex _l(mLock);
oldGeneration = mGeneration;
timeoutMillis = -1;
uint32_t changes = mConfigurationChangesToRefresh;
if (changes) {
mConfigurationChangesToRefresh = 0;
timeoutMillis = 0;
refreshConfigurationLocked(changes);
} else if (mNextTimeout != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout);
}
} // release lock
size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);
{ // acquire lock
AutoMutex _l(mLock);
mReaderIsAliveCondition.broadcast();
if (count) {
processEventsLocked(mEventBuffer, count);
}
if (mNextTimeout != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
if (now >= mNextTimeout) {
#if DEBUG_RAW_EVENTS
ALOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f);
#endif
mNextTimeout = LLONG_MAX;
timeoutExpiredLocked(now);
}
}
if (oldGeneration != mGeneration) {
inputDevicesChanged = true;
getInputDevicesLocked(inputDevices);
}
} // release lock
// Send out a message that the describes the changed input devices.
if (inputDevicesChanged) {
mPolicy->notifyInputDevicesChanged(inputDevices);
}
// Flush queued events out to the listener.
// This must happen outside of the lock because the listener could potentially call
// back into the InputReader's methods, such as getScanCodeState, or become blocked
// on another thread similarly waiting to acquire the InputReader lock thereby
// resulting in a deadlock. This situation is actually quite plausible because the
// listener is actually the input dispatcher, which calls into the window manager,
// which occasionally calls into the input reader.
mQueuedListener->flush();
}
void InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) {
for (const RawEvent* rawEvent = rawEvents; count;) {
int32_t type = rawEvent->type;
size_t batchSize = 1;
if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) {
int32_t deviceId = rawEvent->deviceId;
while (batchSize < count) {
if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT
|| rawEvent[batchSize].deviceId != deviceId) {
break;
}
batchSize += 1;
}
#if DEBUG_RAW_EVENTS
ALOGD("BatchSize: %d Count: %d", batchSize, count);
#endif
processEventsForDeviceLocked(deviceId, rawEvent, batchSize);
} else {
switch (rawEvent->type) {
case EventHubInterface::DEVICE_ADDED:
addDeviceLocked(rawEvent->when, rawEvent->deviceId);
break;
case EventHubInterface::DEVICE_REMOVED:
removeDeviceLocked(rawEvent->when, rawEvent->deviceId);
break;
case EventHubInterface::FINISHED_DEVICE_SCAN:
handleConfigurationChangedLocked(rawEvent->when);
break;
default:
ALOG_ASSERT(false); // can't happen
break;
}
}
count -= batchSize;
rawEvent += batchSize;
}
}
void InputReader::processEventsForDeviceLocked(int32_t deviceId,
const RawEvent* rawEvents, size_t count) {
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
if (deviceIndex < 0) {
ALOGW("Discarding event for unknown deviceId %d.", deviceId);
return;
}
InputDevice* device = mDevices.valueAt(deviceIndex);
if (device->isIgnored()) {
//ALOGD("Discarding event for ignored deviceId %d.", deviceId);
return;
}
device->process(rawEvents, count);
}
void MultiTouchInputMapper::process(const RawEvent* rawEvent) {
ALOGD("ALog MultiTouchInputMapper::process");
TouchInputMapper::process(rawEvent);
mMultiTouchMotionAccumulator.process(rawEvent);
}
void TouchInputMapper::process(const RawEvent* rawEvent) {
mCursorButtonAccumulator.process(rawEvent);
mCursorScrollAccumulator.process(rawEvent);
mTouchButtonAccumulator.process(rawEvent);
if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) {
sync(rawEvent->when);
}
}
void TouchInputMapper::sync(nsecs_t when) {
const RawState* last = mRawStatesPending.isEmpty() ?
&mCurrentRawState : &mRawStatesPending.top();
// Push a new state.
mRawStatesPending.push();
RawState* next = &mRawStatesPending.editTop();
next->clear();
next->when = when;
// Sync button state.
next->buttonState = mTouchButtonAccumulator.getButtonState()
| mCursorButtonAccumulator.getButtonState();
// Sync scroll
next->rawVScroll = mCursorScrollAccumulator.getRelativeVWheel();
next->rawHScroll = mCursorScrollAccumulator.getRelativeHWheel();
mCursorScrollAccumulator.finishSync();
// Sync touch
syncTouch(when, next);
// Assign pointer ids.
if (!mHavePointerIds) {
assignPointerIds(last, next);
}
//#if DEBUG_RAW_EVENTS
ALOGD("ALog syncTouch: pointerCount %d -> %d, touching ids 0x%08x -> 0x%08x, "
"hovering ids 0x%08x -> 0x%08x",
last->rawPointerData.pointerCount,
next->rawPointerData.pointerCount,
last->rawPointerData.touchingIdBits.value,
next->rawPointerData.touchingIdBits.value,
last->rawPointerData.hoveringIdBits.value,
next->rawPointerData.hoveringIdBits.value);
//#endif
processRawTouches(false /*timeout*/);
}
void TouchInputMapper::processRawTouches(bool timeout) {
if (mDeviceMode == DEVICE_MODE_DISABLED) {
// Drop all input if the device is disabled.
mCurrentRawState.clear();
mRawStatesPending.clear();
return;
}
// Drain any pending touch states. The invariant here is that the mCurrentRawState is always
// valid and must go through the full cook and dispatch cycle. This ensures that anything
// touching the current state will only observe the events that have been dispatched to the
// rest of the pipeline.
const size_t N = mRawStatesPending.size();
size_t count;
for(count = 0; count < N; count++) {
const RawState& next = mRawStatesPending[count];
// A failure to assign the stylus id means that we're waiting on stylus data
// and so should defer the rest of the pipeline.
if (assignExternalStylusId(next, timeout)) {
break;
}
// All ready to go.
clearStylusDataPendingFlags();
mCurrentRawState.copyFrom(next);
if (mCurrentRawState.when < mLastRawState.when) {
mCurrentRawState.when = mLastRawState.when;
}
cookAndDispatch(mCurrentRawState.when);
}
if (count != 0) {
mRawStatesPending.removeItemsAt(0, count);
}
if (mExternalStylusDataPending) {
if (timeout) {
nsecs_t when = mExternalStylusFusionTimeout - STYLUS_DATA_LATENCY;
clearStylusDataPendingFlags();
mCurrentRawState.copyFrom(mLastRawState);
#if DEBUG_STYLUS_FUSION
ALOGD("Timeout expired, synthesizing event with new stylus data");
#endif
cookAndDispatch(when);
} else if (mExternalStylusFusionTimeout == LLONG_MAX) {
mExternalStylusFusionTimeout = mExternalStylusState.when + TOUCH_DATA_TIMEOUT;
getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout);
}
}
}
void TouchInputMapper::cookAndDispatch(nsecs_t when) {
// Always start with a clean state.
mCurrentCookedState.clear();
// Apply stylus buttons to current raw state.
applyExternalStylusButtonState(when);
// Handle policy on initial down or hover events.
bool initialDown = mLastRawState.rawPointerData.pointerCount == 0
&& mCurrentRawState.rawPointerData.pointerCount != 0;
uint32_t policyFlags = 0;
bool buttonsPressed = mCurrentRawState.buttonState & ~mLastRawState.buttonState;
if (initialDown || buttonsPressed) {
// If this is a touch screen, hide the pointer on an initial down.
if (mDeviceMode == DEVICE_MODE_DIRECT) {
getContext()->fadePointer();
}
if (mParameters.wake) {
policyFlags |= POLICY_FLAG_WAKE;
}
}
// Consume raw off-screen touches before cooking pointer data.
// If touches are consumed, subsequent code will not receive any pointer data.
if (consumeRawTouches(when, policyFlags)) {
mCurrentRawState.rawPointerData.clear();
}
// Cook pointer data. This call populates the mCurrentCookedState.cookedPointerData structure
// with cooked pointer data that has the same ids and indices as the raw data.
// The following code can use either the raw or cooked data, as needed.
cookPointerData();
// Apply stylus pressure to current cooked state.
applyExternalStylusTouchState(when);
// Synthesize key down from raw buttons if needed.
synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource,
policyFlags, mLastCookedState.buttonState, mCurrentCookedState.buttonState);
// Dispatch the touches either directly or by translation through a pointer on screen.
if (mDeviceMode == DEVICE_MODE_POINTER) {
for (BitSet32 idBits(mCurrentRawState.rawPointerData.touchingIdBits);
!idBits.isEmpty(); ) {
uint32_t id = idBits.clearFirstMarkedBit();
const RawPointerData::Pointer& pointer =
mCurrentRawState.rawPointerData.pointerForId(id);
if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS
|| pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) {
mCurrentCookedState.stylusIdBits.markBit(id);
} else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_FINGER
|| pointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) {
mCurrentCookedState.fingerIdBits.markBit(id);
} else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_MOUSE) {
mCurrentCookedState.mouseIdBits.markBit(id);
}
}
for (BitSet32 idBits(mCurrentRawState.rawPointerData.hoveringIdBits);
!idBits.isEmpty(); ) {
uint32_t id = idBits.clearFirstMarkedBit();
const RawPointerData::Pointer& pointer =
mCurrentRawState.rawPointerData.pointerForId(id);
if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS
|| pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) {
mCurrentCookedState.stylusIdBits.markBit(id);
}
}
// Stylus takes precedence over all tools, then mouse, then finger.
PointerUsage pointerUsage = mPointerUsage;
if (!mCurrentCookedState.stylusIdBits.isEmpty()) {
mCurrentCookedState.mouseIdBits.clear();
mCurrentCookedState.fingerIdBits.clear();
pointerUsage = POINTER_USAGE_STYLUS;
} else if (!mCurrentCookedState.mouseIdBits.isEmpty()) {
mCurrentCookedState.fingerIdBits.clear();
pointerUsage = POINTER_USAGE_MOUSE;
} else if (!mCurrentCookedState.fingerIdBits.isEmpty() ||
isPointerDown(mCurrentRawState.buttonState)) {
pointerUsage = POINTER_USAGE_GESTURES;
}
dispatchPointerUsage(when, policyFlags, pointerUsage);
} else {
if (mDeviceMode == DEVICE_MODE_DIRECT
&& mConfig.showTouches && mPointerController != NULL) {
mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_SPOT);
mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
mPointerController->setButtonState(mCurrentRawState.buttonState);
mPointerController->setSpots(mCurrentCookedState.cookedPointerData.pointerCoords,
mCurrentCookedState.cookedPointerData.idToIndex,
mCurrentCookedState.cookedPointerData.touchingIdBits);
}
if (!mCurrentMotionAborted) {
dispatchButtonRelease(when, policyFlags);
dispatchHoverExit(when, policyFlags);
dispatchTouches(when, policyFlags);
dispatchHoverEnterAndMove(when, policyFlags);
dispatchButtonPress(when, policyFlags);
}
if (mCurrentCookedState.cookedPointerData.pointerCount == 0) {
mCurrentMotionAborted = false;
}
}
// Synthesize key up from raw buttons if needed.
synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource,
policyFlags, mLastCookedState.buttonState, mCurrentCookedState.buttonState);
// Clear some transient state.
mCurrentRawState.rawVScroll = 0;
mCurrentRawState.rawHScroll = 0;
// Copy current touch to last touch in preparation for the next cycle.
mLastRawState.copyFrom(mCurrentRawState);
mLastCookedState.copyFrom(mCurrentCookedState);
}
void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) {
BitSet32 currentIdBits = mCurrentCookedState.cookedPointerData.touchingIdBits;
BitSet32 lastIdBits = mLastCookedState.cookedPointerData.touchingIdBits;
int32_t metaState = getContext()->getGlobalMetaState();
int32_t buttonState = mCurrentCookedState.buttonState;
if (currentIdBits == lastIdBits) {
if (!currentIdBits.isEmpty()) {
// No pointer id changes so this is a move event.
// The listener takes care of batching moves so we don't have to deal with that here.
dispatchMotion(when, policyFlags, mSource,
AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState,
AMOTION_EVENT_EDGE_FLAG_NONE,
mCurrentCookedState.cookedPointerData.pointerProperties,
mCurrentCookedState.cookedPointerData.pointerCoords,
mCurrentCookedState.cookedPointerData.idToIndex,
currentIdBits, -1,
mOrientedXPrecision, mOrientedYPrecision, mDownTime);
}
} else {
// There may be pointers going up and pointers going down and pointers moving
// all at the same time.
BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value);
BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value);
BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value);
BitSet32 dispatchedIdBits(lastIdBits.value);
// Update last coordinates of pointers that have moved so that we observe the new
// pointer positions at the same time as other pointers that have just gone up.
bool moveNeeded = updateMovedPointers(
mCurrentCookedState.cookedPointerData.pointerProperties,
mCurrentCookedState.cookedPointerData.pointerCoords,
mCurrentCookedState.cookedPointerData.idToIndex,
mLastCookedState.cookedPointerData.pointerProperties,
mLastCookedState.cookedPointerData.pointerCoords,
mLastCookedState.cookedPointerData.idToIndex,
moveIdBits);
if (buttonState != mLastCookedState.buttonState) {
moveNeeded = true;
}
// Dispatch pointer up events.
while (!upIdBits.isEmpty()) {
uint32_t upId = upIdBits.clearFirstMarkedBit();
dispatchMotion(when, policyFlags, mSource,
AMOTION_EVENT_ACTION_POINTER_UP, 0, 0, metaState, buttonState, 0,
mLastCookedState.cookedPointerData.pointerProperties,
mLastCookedState.cookedPointerData.pointerCoords,
mLastCookedState.cookedPointerData.idToIndex,
dispatchedIdBits, upId, mOrientedXPrecision, mOrientedYPrecision, mDownTime);
dispatchedIdBits.clearBit(upId);
}
// Dispatch move events if any of the remaining pointers moved from their old locations.
// Although applications receive new locations as part of individual pointer up
// events, they do not generally handle them except when presented in a move event.
if (moveNeeded && !moveIdBits.isEmpty()) {
ALOG_ASSERT(moveIdBits.value == dispatchedIdBits.value);
dispatchMotion(when, policyFlags, mSource,
AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState, 0,
mCurrentCookedState.cookedPointerData.pointerProperties,
mCurrentCookedState.cookedPointerData.pointerCoords,
mCurrentCookedState.cookedPointerData.idToIndex,
dispatchedIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime);
}
// Dispatch pointer down events using the new pointer locations.
while (!downIdBits.isEmpty()) {
uint32_t downId = downIdBits.clearFirstMarkedBit();
dispatchedIdBits.markBit(downId);
if (dispatchedIdBits.count() == 1) {
// First pointer is going down. Set down time.
mDownTime = when;
}
dispatchMotion(when, policyFlags, mSource,
AMOTION_EVENT_ACTION_POINTER_DOWN, 0, 0, metaState, buttonState, 0,
mCurrentCookedState.cookedPointerData.pointerProperties,
mCurrentCookedState.cookedPointerData.pointerCoords,
mCurrentCookedState.cookedPointerData.idToIndex,
dispatchedIdBits, downId, mOrientedXPrecision, mOrientedYPrecision, mDownTime);
}
}
}
void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source,
int32_t action, int32_t actionButton, int32_t flags,
int32_t metaState, int32_t buttonState, int32_t edgeFlags,
const PointerProperties* properties, const PointerCoords* coords,
const uint32_t* idToIndex, BitSet32 idBits, int32_t changedId,
float xPrecision, float yPrecision, nsecs_t downTime) {
//AnsonCode
ALOGD("ALog dispatchMotion source(%d), width(%d), height(%d), orientation(%d)", source, mSurfaceWidth, mSurfaceHeight, mSurfaceOrientation);
ALOGD("ALog coords(%f, %f), xP(%f), yP(%f)", coords->getX(), coords->getY(), xPrecision, yPrecision);
PointerCoords pointerCoords[MAX_POINTERS];
PointerProperties pointerProperties[MAX_POINTERS];
uint32_t pointerCount = 0;
while (!idBits.isEmpty()) {
uint32_t id = idBits.clearFirstMarkedBit();
uint32_t index = idToIndex[id];
pointerProperties[pointerCount].copyFrom(properties[index]);
pointerCoords[pointerCount].copyFrom(coords[index]);
if (changedId >= 0 && id == uint32_t(changedId)) {
action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
}
pointerCount += 1;
}
ALOG_ASSERT(pointerCount != 0);
if (changedId >= 0 && pointerCount == 1) {
// Replace initial down and final up action.
// We can compare the action without masking off the changed pointer index
// because we know the index is 0.
if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) {
action = AMOTION_EVENT_ACTION_DOWN;
} else if (action == AMOTION_EVENT_ACTION_POINTER_UP) {
action = AMOTION_EVENT_ACTION_UP;
} else {
// Can't happen.
ALOG_ASSERT(false);
}
}
NotifyMotionArgs args(when, getDeviceId(), source, policyFlags,
action, actionButton, flags, metaState, buttonState, edgeFlags,
mViewport.displayId, pointerCount, pointerProperties, pointerCoords,
xPrecision, yPrecision, downTime);
getListener()->notifyMotion(&args);
}
//补充: 此函数对数据进行二次转换, 与屏幕方向等因素有关
void TouchInputMapper::cookPointerData() {
ALOGD("ALog cookPointerData");
uint32_t currentPointerCount = mCurrentRawState.rawPointerData.pointerCount;
mCurrentCookedState.cookedPointerData.clear();
mCurrentCookedState.cookedPointerData.pointerCount = currentPointerCount;
mCurrentCookedState.cookedPointerData.hoveringIdBits =
mCurrentRawState.rawPointerData.hoveringIdBits;
mCurrentCookedState.cookedPointerData.touchingIdBits =
mCurrentRawState.rawPointerData.touchingIdBits;
if (mCurrentCookedState.cookedPointerData.pointerCount == 0) {
mCurrentCookedState.buttonState = 0;
} else {
mCurrentCookedState.buttonState = mCurrentRawState.buttonState;
}
// Walk through the the active pointers and map device coordinates onto
// surface coordinates and adjust for display orientation.
for (uint32_t i = 0; i < currentPointerCount; i++) {
const RawPointerData::Pointer& in = mCurrentRawState.rawPointerData.pointers[i];
// Size
float touchMajor, touchMinor, toolMajor, toolMinor, size;
switch (mCalibration.sizeCalibration) {
case Calibration::SIZE_CALIBRATION_GEOMETRIC:
case Calibration::SIZE_CALIBRATION_DIAMETER:
case Calibration::SIZE_CALIBRATION_BOX:
case Calibration::SIZE_CALIBRATION_AREA:
if (mRawPointerAxes.touchMajor.valid && mRawPointerAxes.toolMajor.valid) {
touchMajor = in.touchMajor;
touchMinor = mRawPointerAxes.touchMinor.valid ? in.touchMinor : in.touchMajor;
toolMajor = in.toolMajor;
toolMinor = mRawPointerAxes.toolMinor.valid ? in.toolMinor : in.toolMajor;
size = mRawPointerAxes.touchMinor.valid
? avg(in.touchMajor, in.touchMinor) : in.touchMajor;
} else if (mRawPointerAxes.touchMajor.valid) {
toolMajor = touchMajor = in.touchMajor;
toolMinor = touchMinor = mRawPointerAxes.touchMinor.valid
? in.touchMinor : in.touchMajor;
size = mRawPointerAxes.touchMinor.valid
? avg(in.touchMajor, in.touchMinor) : in.touchMajor;
} else if (mRawPointerAxes.toolMajor.valid) {
touchMajor = toolMajor = in.toolMajor;
touchMinor = toolMinor = mRawPointerAxes.toolMinor.valid
? in.toolMinor : in.toolMajor;
size = mRawPointerAxes.toolMinor.valid
? avg(in.toolMajor, in.toolMinor) : in.toolMajor;
} else {
ALOG_ASSERT(false, "No touch or tool axes. "
"Size calibration should have been resolved to NONE.");
touchMajor = 0;
touchMinor = 0;
toolMajor = 0;
toolMinor = 0;
size = 0;
}
if (mCalibration.haveSizeIsSummed && mCalibration.sizeIsSummed) {
uint32_t touchingCount =
mCurrentRawState.rawPointerData.touchingIdBits.count();
if (touchingCount > 1) {
touchMajor /= touchingCount;
touchMinor /= touchingCount;
toolMajor /= touchingCount;
toolMinor /= touchingCount;
size /= touchingCount;
}
}
if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_GEOMETRIC) {
touchMajor *= mGeometricScale;
touchMinor *= mGeometricScale;
toolMajor *= mGeometricScale;
toolMinor *= mGeometricScale;
} else if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_AREA) {
touchMajor = touchMajor > 0 ? sqrtf(touchMajor) : 0;
touchMinor = touchMajor;
toolMajor = toolMajor > 0 ? sqrtf(toolMajor) : 0;
toolMinor = toolMajor;
} else if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_DIAMETER) {
touchMinor = touchMajor;
toolMinor = toolMajor;
}
mCalibration.applySizeScaleAndBias(&touchMajor);
mCalibration.applySizeScaleAndBias(&touchMinor);
mCalibration.applySizeScaleAndBias(&toolMajor);
mCalibration.applySizeScaleAndBias(&toolMinor);
size *= mSizeScale;
break;
default:
touchMajor = 0;
touchMinor = 0;
toolMajor = 0;
toolMinor = 0;
size = 0;
break;
}
// Pressure
float pressure;
switch (mCalibration.pressureCalibration) {
case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
pressure = in.pressure * mPressureScale;
break;
default:
pressure = in.isHovering ? 0 : 1;
break;
}
// Tilt and Orientation
float tilt;
float orientation;
if (mHaveTilt) {
float tiltXAngle = (in.tiltX - mTiltXCenter) * mTiltXScale;
float tiltYAngle = (in.tiltY - mTiltYCenter) * mTiltYScale;
orientation = atan2f(-sinf(tiltXAngle), sinf(tiltYAngle));
tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle));
} else {
tilt = 0;
switch (mCalibration.orientationCalibration) {
case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
orientation = in.orientation * mOrientationScale;
break;
case Calibration::ORIENTATION_CALIBRATION_VECTOR: {
int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4);
int32_t c2 = signExtendNybble(in.orientation & 0x0f);
if (c1 != 0 || c2 != 0) {
orientation = atan2f(c1, c2) * 0.5f;
float confidence = hypotf(c1, c2);
float scale = 1.0f + confidence / 16.0f;
touchMajor *= scale;
touchMinor /= scale;
toolMajor *= scale;
toolMinor /= scale;
} else {
orientation = 0;
}
break;
}
default:
orientation = 0;
}
}
// Distance
float distance;
switch (mCalibration.distanceCalibration) {
case Calibration::DISTANCE_CALIBRATION_SCALED:
distance = in.distance * mDistanceScale;
break;
default:
distance = 0;
}
// Coverage
int32_t rawLeft, rawTop, rawRight, rawBottom;
switch (mCalibration.coverageCalibration) {
case Calibration::COVERAGE_CALIBRATION_BOX:
rawLeft = (in.toolMinor & 0xffff0000) >> 16;
rawRight = in.toolMinor & 0x0000ffff;
rawBottom = in.toolMajor & 0x0000ffff;
rawTop = (in.toolMajor & 0xffff0000) >> 16;
break;
default:
rawLeft = rawTop = rawRight = rawBottom = 0;
break;
}
// Adjust X,Y coords for device calibration
// TODO: Adjust coverage coords?
float xTransformed = in.x, yTransformed = in.y;
mAffineTransform.applyTo(xTransformed, yTransformed);
// Adjust X, Y, and coverage coords for surface orientation.
float x, y;
float left, top, right, bottom;
/*ALOGD("ALog deviceName %s", getDeviceName().string());
//AnsonCode rotation
int rot = DISPLAY_ORIENTATION_0;
if(mSurfaceOrientation == DISPLAY_ORIENTATION_180)rot = DISPLAY_ORIENTATION_0;
else if(mSurfaceOrientation == DISPLAY_ORIENTATION_0)rot = DISPLAY_ORIENTATION_180;*/
switch (mSurfaceOrientation) {
case DISPLAY_ORIENTATION_90:
x = float(yTransformed - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
y = float(mRawPointerAxes.x.maxValue - xTransformed) * mXScale + mXTranslate;
left = float(rawTop - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
right = float(rawBottom- mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
bottom = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale + mXTranslate;
top = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale + mXTranslate;
orientation -= M_PI_2;
if (mOrientedRanges.haveOrientation && orientation < mOrientedRanges.orientation.min) {
orientation += (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min);
}
break;
case DISPLAY_ORIENTATION_180:
x = float(mRawPointerAxes.x.maxValue - xTransformed) * mXScale + mXTranslate;
y = float(mRawPointerAxes.y.maxValue - yTransformed) * mYScale + mYTranslate;
left = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale + mXTranslate;
right = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale + mXTranslate;
bottom = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale + mYTranslate;
top = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale + mYTranslate;
orientation -= M_PI;
if (mOrientedRanges.haveOrientation && orientation < mOrientedRanges.orientation.min) {
orientation += (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min);
}
break;
case DISPLAY_ORIENTATION_270:
x = float(mRawPointerAxes.y.maxValue - yTransformed) * mYScale + mYTranslate;
y = float(xTransformed - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
left = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale + mYTranslate;
right = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale + mYTranslate;
bottom = float(rawRight - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
top = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
orientation += M_PI_2;
if (mOrientedRanges.haveOrientation && orientation > mOrientedRanges.orientation.max) {
orientation -= (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min);
}
break;
default:
x = float(xTransformed - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
y = float(yTransformed - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
left = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
right = float(rawRight - mRawPointerAxes.x.minValue) * mXScale + mXTranslate;
bottom = float(rawBottom - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
top = float(rawTop - mRawPointerAxes.y.minValue) * mYScale + mYTranslate;
break;
}
// Write output coords.
PointerCoords& out = mCurrentCookedState.cookedPointerData.pointerCoords[i];
out.clear();
out.setAxisValue(AMOTION_EVENT_AXIS_X, x);
out.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure);
out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size);
out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor);
out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor);
out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation);
out.setAxisValue(AMOTION_EVENT_AXIS_TILT, tilt);
out.setAxisValue(AMOTION_EVENT_AXIS_DISTANCE, distance);
if (mCalibration.coverageCalibration == Calibration::COVERAGE_CALIBRATION_BOX) {
out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_1, left);
out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_2, top);
out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_3, right);
out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_4, bottom);
} else {
out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor);
out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor);
}
// Write output properties.
PointerProperties& properties =
mCurrentCookedState.cookedPointerData.pointerProperties[i];
uint32_t id = in.id;
properties.clear();
properties.id = id;
properties.toolType = in.toolType;
// Write id index.
mCurrentCookedState.cookedPointerData.idToIndex[id] = i;
}
}