汇编语言基础四 —— 操作数的寻址方式

操作数的寻址方式


微机系统有七种基本的寻址方式:立即寻址方式、寄存器寻址方式、直接寻址方式、寄存器间接寻址方式、寄存器相对寻址方式、基址加变址寻址方式、相对基址加变址寻址方式等。其中,后五种寻址方式是确定内存单元有效地址的五种不同的计算方法,用它们可方便地实现对数组元素的访问。

另外,在32位微机系统中,为了扩大对存储单元的寻址能力,增加了一种新的寻址方式——32位地址的寻址方式。

    1.立即寻址方式

操作数作为指令的一部分而直接写在指令中,这种操作数称为立即数,这种寻址方式也就称为立即数寻址方式。

立即数可以是8位、16位或32位,该数值紧跟在操作码之后。如果立即数为16位或32位,那么,它将按“高高低低”的原则进行存储。

    2.寄存器寻址方式

指令所要的操作数已存储在某寄存器中,或把目标操作数存入寄存器。把在指令中指出所使用寄存器(即:寄存器的助忆符)的寻址方式称为寄存器寻址方式。

指令中可以引用的寄存器及其符号名称如下:

、8位寄存器有:AH、AL、BH、BL、CH、CL、DH和DL等;
、16位寄存器有:AX、BX、CX、DX、SI、DI、SP、BP和段寄存器等;
、32位寄存器有:EAX、EBX、ECX、EDX、ESI、EDI、ESP和EBP等。

寄存器寻址方式是一种简单快捷的寻址方式,源和目的操作数都可以是寄存器。

3.直接寻址方式

指令所要的操作数存放在内存中,在指令中直接给出该操作数的有效地址,这种寻址方式为直接寻址方式。

在通常情况下,操作数存放在数据段中,所以,其物理地址将由数据段寄存器DS和指令中给出的有效地址直接形成,但如果使用段超越前缀,那么,操作数可存放在其它段。

注意:立即寻址方式和直接寻址方式的书写格式的不同,直接寻址的地址要写在括号“[”,“]”内。在程序中,直接地址通常用内存变量名来表示,如:MOV BX, VARW,其中,VARW是内存字变量。

试比较下列指令中源操作数的寻址方式(VARW是内存字变量):

  MOV AX, 1234H MOV AX, [1234H] ;前者是立即寻址,后者是直接寻址
MOV AX, VARW MOV AX, [VARW] ;两者是等效的,均为直接寻址

4.寄存器间接寻址方式

操作数在存储器中,操作数的有效地址用SIDIBXBP等四个寄存器之一来指定,称这种寻址方式为寄存器间接寻址方式。

在不使用段超越前缀的情况下,有下列规定:

若有效地址用SIDIBX等之一来指定,则其缺省的段寄存器为DS
若有效地址用BP来指定,则其缺省的段寄存器为SS(即:堆栈段)。

     5.寄存器相对寻址方式

操作数在存储器中,其有效地址是一个基址寄存器(BXBP)或变址寄存器(SIDI)的内容和指令中的8位/16位偏移量之和。其有效地址的计算公式如右式所示。

在不使用段超越前缀的情况下,有下列规定:

、若有效地址用SIDIBX等之一来指定,则其缺省的段寄存器为DS

、若有效地址用BP来指定,则其缺省的段寄存器为SS


指令中给出的8位/16位偏移量用补码表示。在计算有效地址时,如果偏移量是8位,则进行符号扩展成16位。当所得的有效地址超过0FFFFH,则取其64K的模。

6.基址加变址寻址方式

操作数在存储器中,其有效地址是一个基址寄存器(BXBP)和一个变址寄存器(SIDI)的内容之和。其有效地址的计算公式如右式所示。

在不使用段超越前缀的情况下,规定:如果有效地址中含有BP,则缺省的段寄存器为SS;否则,缺省的段寄存器为DS

7.相对基址加变址寻址方式

操作数在存储器中,其有效地址是一个基址寄存器(BXBP)的值、一个变址寄存器(SIDI)的值和指令中的8位/16位偏移量之和。

在不使用段超越前缀的情况下,规定:如果有效地址中含有BP,则其缺省的段寄存器为SS;否则,其缺省的段寄存器为DS

指令中给出的8位/16位偏移量用补码表示。在计算有效地址时,如果偏移量是8位,则进行符号扩展成16位。当所得的有效地址超过0FFFFH,则取其64K的模。

从相对基址加变址这种寻址方式来看,由于它的可变因素较多,看起来就显得复杂些,但正因为其可变因素多,它的灵活性也就很高。比如:



D1[i]来访问一维数组D1的第i个元素,它的寻址有一个自由度,用D2[i][j]来访问二维数组D2的第i行、第j列的元素,其寻址有二个自由度。多一个可变的量,其寻址方式的灵活度也就相应提高了。

相对基址加变址寻址方式有多种等价的书写方式,下面的书写格式都是正确的,并且其寻址含义也是一致的。

MOV AX, [BX+SI+1000H]   MOV AX, 1000H[BX+SI]
MOV AX, 1000H[BX][SI]    MOV AX, 1000H[SI][BX]

但书写格式BX [1000+SI]和SI[1000H+BX]等是错误的,即所用寄存器不能在“[“,”]”之外,该限制对寄存器相对寻址方式的书写也同样起作用。

相对基址加变址寻址方式是以上7种寻址方式中最复杂的一种寻址方式,它可变形为其它类型的存储器寻址方式。表3.1列举出该寻址方式与其它寻址方式之间的变形关系。

表3.1 相对基址加变址寻址方式与其它寻址方式之间的变形关系

源操作数

指令的变形

源操作数的寻址方式

只有偏移量

MOV AX, [100H]

直接寻址方式

只有一个寄存器

MOV AX, [BX] 或 MOV AX, [SI]

寄存器间接寻址方式

有一个寄存器和偏移量

MOV AX, [BX+100H] 或 MOV AX, [SI+100H]

寄存器相对寻址方式

有二个寄存器

MOV AX, [BX+SI]

基址加变址寻址方式

有二个寄存器和偏移量

MOV AX, [BX+SI+100H]

相对基址加变址寻址方式



8.32位地址的寻址方式

在32位微机系统中,除了支持前面的七种寻址方式外,又提供了一种更灵活、方便,但也更复杂的内存寻址方式,从而使内存地址的寻址范围得到了进一步扩大。

在用16位寄存器来访问存储单元时,只能使用基地址寄存器(BXBP)和变址寄存器(SIDI)来作为地址偏移量的一部分,但在用32位寄存器寻址时,不存在上述限制,所有32位寄存器(EAXEBXECXEDXESIEDIEBPESP)都可以是地址偏移量的一个组成部分。

当用32位地址偏移量进行寻址时,内存地址的偏移量可分为三部分:一个32位基址寄存器,一个可乘1、2、4或8的32位变址寄存器,一个8位/32位的偏移常量,并且这三部分还可进行任意组合,省去其中之一或之二。

32位基址寄存器是:EAX、EBX、ECX、EDX、ESI、EDI、EBP和ESP;
32位变址寄存器是:EAX、EBX、ECX、EDX、ESI、EDI和EBP(除ESP之外)。

下面列举几个32位地址寻址指令:

MOV AX, [123456H]

MOV EAX, [EBX]

MOV EBX, [ECX*2]

MOV EBX, [EAX+100H]

MOV EDX, [EAX*4+200H]

MOV EBX, [EAX+EDX*2]

MOV EBX, [EAX+EDX*2+300H]

MOV AX, [ESP]


由于32位寻址方式能使用所有的通用寄存器,所以,和该有效地址相组合的段寄存器也就有新的规定。具体规定如下:

1、地址中寄存器的书写顺序决定该寄存器是基址寄存器,还是变址寄存器;

如:[EBX+EBP]中的EBX是基址寄存器,EBP是变址寄存器,而[EBP+EBX]中的EBP是基址寄存器,EBX是变址寄存器;

2、默认段寄存器的选用取决于基址寄存器;

3、基址寄存器是EBPESP时,默认的段寄存器是SS,否则,默认的段寄存器是DS

4、在指令中,如果使用段前缀的方式,那么,显式段寄存器优先。

下面列举几个32位地址寻址指令及其内存操作数的段寄存器。

指令的举例 访问内存单元所用的段寄存器
MOV  AX, [123456H] ;默认段寄存器DS
MOV  EAX, [EBX+EBP] ;默认段寄存器DS
MOV  EBX, [EBP+EBX] ;默认段寄存器SS
MOV  EBX, [EAX+100H] ;默认段寄存器DS
MOV  EDX, ES:[EAX*4+200H] ;显式段寄存器ES
MOV  [ESP+EDX*2], AX  ;默认段寄存器SS
MOV  EBX, GS:[EAX+EDX*2+300H] ;显式段寄存器GS
MOV  AX, [ESP]  ;默认段寄存器SS



你可能感兴趣的:(X86汇编)