HiveQL计算连续天数问题

现有商户每日交易汇总数据文件merch_trade_stat.txt,如下:(三列数据以','分隔,分别是商户ID、交易日期、日交易金额)

[root@node1 ~]$ more merch_trade_day_stat.txt
1,2017-07-01,100
1,2017-07-02,200
1,2017-07-03,300
1,2017-07-04,400
1,2017-07-05,500
1,2017-07-06,600
1,2017-07-07,40
1,2017-07-08,800
1,2017-07-09,900
1,2017-07-10,50
1,2017-07-11,100
1,2017-07-12,80
1,2017-07-13,300
1,2017-07-14,400
1,2017-07-15,500
2,2017-07-01,100
2,2017-07-02,200
2,2017-07-03,300
2,2017-07-04,60
2,2017-07-05,500
2,2017-07-06,600
2,2017-07-07,40
2,2017-07-08,800
2,2017-07-09,900
2,2017-07-10,50
2,2017-07-11,100
2,2017-07-12,80
2,2017-07-13,300
2,2017-07-14,400
2,2017-07-15,500

计算出每个商户日交易金额不小于100的最大连续天数:

hive> CREATE TABLE merch_trade_day_stat(
    >     merch_id string COMMENT '商户ID',
    >     date_key string COMMENT '交易日期',
    >     tx_amt int COMMENT '日交易金额'
    > ) ROW FORMAT DELIMITED
    >  FIELDS TERMINATED BY ',';
OK
Time taken: 0.375 seconds
hive> load data local inpath 'merch_trade_day_stat.txt' into table merch_trade_day_stat;
Loading data to table default.merch_trade_day_stat
Table default.merch_trade_day_stat stats: [numFiles=1, totalSize=443]
OK
Time taken: 0.45 seconds
hive> select * from merch_trade_day_stat;
OK
1	2017-07-01	100
1	2017-07-02	200
1	2017-07-03	300
1	2017-07-04	400
1	2017-07-05	500
1	2017-07-06	600
1	2017-07-07	40
1	2017-07-08	800
1	2017-07-09	900
1	2017-07-10	50
1	2017-07-11	100
1	2017-07-12	80
1	2017-07-13	300
1	2017-07-14	400
1	2017-07-15	500
2	2017-07-01	100
2	2017-07-02	200
2	2017-07-03	300
2	2017-07-04	60
2	2017-07-05	500
2	2017-07-06	600
2	2017-07-07	40
2	2017-07-08	800
2	2017-07-09	900
2	2017-07-10	50
2	2017-07-11	100
2	2017-07-12	80
2	2017-07-13	300
2	2017-07-14	400
2	2017-07-15	500
Time taken: 0.069 seconds, Fetched: 30 row(s)
hive> select a.merch_id,
    >        max(a.continue_days) as max_continue_days
    >     from(select a.merch_id,
    >                 count(a.date_key) as continue_days
    >             from(select merch_id,
    >                         date_key,
    >                         date_sub(date_key, row_number() over(partition by merch_id order by date_key)) as tmp_date
    >                     from merch_trade_day_stat
    >                     where tx_amt >= 100
    >                 ) a
    >             group by a.merch_id, a.tmp_date
    >         ) a
    >     group by a.merch_id;
Query ID = bd_20170810104913_29569c95-1110-4ed4-906e-b09ba6712ac7
Total jobs = 2
Launching Job 1 out of 2
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=
In order to set a constant number of reducers:
  set mapreduce.job.reduces=
Starting Job = job_1499860627544_0066, Tracking URL = http://ali-bj01-tst-cluster-004.xiweiai.cn:8088/proxy/application_1499860627544_0066/
Kill Command = /mnt/bd/software/hadoop/hadoop-2.6.2/bin/hadoop job  -kill job_1499860627544_0066
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2017-08-10 10:49:18,583 Stage-1 map = 0%,  reduce = 0%
2017-08-10 10:49:24,792 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.26 sec
2017-08-10 10:49:29,929 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 2.85 sec
MapReduce Total cumulative CPU time: 2 seconds 850 msec
Ended Job = job_1499860627544_0066
Launching Job 2 out of 2
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=
In order to set a constant number of reducers:
  set mapreduce.job.reduces=
Starting Job = job_1499860627544_0067, Tracking URL = http://ali-bj01-tst-cluster-004.xiweiai.cn:8088/proxy/application_1499860627544_0067/
Kill Command = /mnt/bd/software/hadoop/hadoop-2.6.2/bin/hadoop job  -kill job_1499860627544_0067
Hadoop job information for Stage-2: number of mappers: 1; number of reducers: 1
2017-08-10 10:49:40,581 Stage-2 map = 0%,  reduce = 0%
2017-08-10 10:49:44,691 Stage-2 map = 100%,  reduce = 0%, Cumulative CPU 0.74 sec
2017-08-10 10:49:49,826 Stage-2 map = 100%,  reduce = 100%, Cumulative CPU 1.93 sec
MapReduce Total cumulative CPU time: 1 seconds 930 msec
Ended Job = job_1499860627544_0067
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 2.85 sec   HDFS Read: 9593 HDFS Write: 321 SUCCESS
Stage-Stage-2: Map: 1  Reduce: 1   Cumulative CPU: 1.93 sec   HDFS Read: 6039 HDFS Write: 8 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 780 msec
OK
1	6
2	3
Time taken: 37.05 seconds, Fetched: 2 row(s)

转载于:https://my.oschina.net/u/3446722/blog/1505694

你可能感兴趣的:(HiveQL计算连续天数问题)