看两个例子:
a = 1
def fun(a):
a = 2
fun(a)
print a # 1
a = []
def fun(a):
a.append(1)
fun(a)
print a # [1]
所有的变量都可以理解是内存中一个对象的“引用”,或者,也可以看似c中void*的感觉。
通过id
来看引用a
的内存地址可以比较理解:
a = 1
def fun(a):
print "func_in",id(a) # func_in 41322472
a = 2
print "re-point",id(a), id(2) # re-point 41322448 41322448
print "func_out",id(a), id(1) # func_out 41322472 41322472
fun(a)
print a # 1
注:具体的值在不同电脑上运行时可能不同。
可以看到,在执行完a = 2
之后,a
引用中保存的值,即内存地址发生变化,由原来1
对象的所在的地址变成了2
这个实体对象的内存地址。
而第2个例子a
引用保存的内存值就不会发生变化:
a = []
def fun(a):
print "func_in",id(a) # func_in 53629256
a.append(1)
print "func_out",id(a) # func_out 53629256
fun(a)
print a # [1]
这里记住的是类型是属于对象的,而不是变量。而对象有两种,“可更改”(mutable)与“不可更改”(immutable)对象。在python中,strings, tuples, 和numbers是不可更改的对象,而 list, dict, set 等则是可以修改的对象。(这就是这个问题的重点)
当一个引用传递给函数的时候,函数自动复制一份引用,这个函数里的引用和外边的引用没有半毛关系了.所以第一个例子里函数把引用指向了一个不可变对象,当函数返回的时候,外面的引用没半毛感觉.而第二个例子就不一样了,函数内的引用指向的是可变对象,对它的操作就和定位了指针地址一样,在内存里进行修改.
如果还不明白的话,这里有更好的解释: http://stackoverflow.com/questions/986006/how-do-i-pass-a-variable-by-reference
这个非常的不常用,但是像ORM这种复杂的结构还是会需要的,详情请看:http://stackoverflow.com/questions/100003/what-is-a-metaclass-in-python
Python其实有3个方法,即静态方法(staticmethod),类方法(classmethod)和实例方法,如下:
def foo(x):
print "executing foo(%s)"%(x)
class A(object):
def foo(self,x):
print "executing foo(%s,%s)"%(self,x)
@classmethod
def class_foo(cls,x):
print "executing class_foo(%s,%s)"%(cls,x)
@staticmethod
def static_foo(x):
print "executing static_foo(%s)"%x
a=A()
这里先理解下函数参数里面的self和cls.这个self和cls是对类或者实例的绑定,对于一般的函数来说我们可以这么调用foo(x)
,这个函数就是最常用的,它的工作跟任何东西(类,实例)无关.对于实例方法,我们知道在类里每次定义方法的时候都需要绑定这个实例,就是foo(self, x)
,为什么要这么做呢?因为实例方法的调用离不开实例,我们需要把实例自己传给函数,调用的时候是这样的a.foo(x)
(其实是foo(a, x)
).类方法一样,只不过它传递的是类而不是实例,A.class_foo(x)
.注意这里的self和cls可以替换别的参数,但是python的约定是这俩,还是不要改的好.
对于静态方法其实和普通的方法一样,不需要对谁进行绑定,唯一的区别是调用的时候需要使用a.static_foo(x)
或者A.static_foo(x)
来调用.
\ | 实例方法 | 类方法 | 静态方法 |
---|---|---|---|
a = A() | a.foo(x) | a.class_foo(x) | a.static_foo(x) |
A | 不可用 | A.class_foo(x) | A.static_foo(x) |
更多关于这个问题:
类变量:
是可在类的所有实例之间共享的值(也就是说,它们不是单独分配给每个实例的)。例如下例中,num_of_instance 就是类变量,用于跟踪存在着多少个Test 的实例。
实例变量:
实例化之后,每个实例单独拥有的变量。
class Test(object):
num_of_instance = 0
def __init__(self, name):
self.name = name
Test.num_of_instance += 1
if __name__ == '__main__':
print Test.num_of_instance # 0
t1 = Test('jack')
print Test.num_of_instance # 1
t2 = Test('lucy')
print t1.name , t1.num_of_instance # jack 2
print t2.name , t2.num_of_instance # lucy 2
补充的例子
class Person:
name="aaa"
p1=Person()
p2=Person()
p1.name="bbb"
print p1.name # bbb
print p2.name # aaa
print Person.name # aaa
这里p1.name="bbb"
是实例调用了类变量,这其实和上面第一个问题一样,就是函数传参的问题,p1.name
一开始是指向的类变量name="aaa"
,但是在实例的作用域里把类变量的引用改变了,就变成了一个实例变量,self.name不再引用Person的类变量name了.
可以看看下面的例子:
class Person:
name=[]
p1=Person()
p2=Person()
p1.name.append(1)
print p1.name # [1]
print p2.name # [1]
print Person.name # [1]
参考:http://stackoverflow.com/questions/6470428/catch-multiple-exceptions-in-one-line-except-block
这个也是python彪悍的特性.
自省就是面向对象的语言所写的程序在运行时,所能知道对象的类型.简单一句就是运行时能够获得对象的类型.比如type(),dir(),getattr(),hasattr(),isinstance().
a = [1,2,3]
b = {'a':1,'b':2,'c':3}
c = True
print type(a),type(b),type(c) #
print isinstance(a,list) # True
可能你见过列表推导时,却没有见过字典推导式,在2.7中才加入的:
d = {key: value for (key, value) in iterable}
>>> class MyClass():
... def __init__(self):
... self.__superprivate = "Hello"
... self._semiprivate = ", world!"
...
>>> mc = MyClass()
>>> print mc.__superprivate
Traceback (most recent call last):
File "" , line 1, in <module>
AttributeError: myClass instance has no attribute '__superprivate'
>>> print mc._semiprivate
, world!
>>> print mc.__dict__
{'_MyClass__superprivate': 'Hello', '_semiprivate': ', world!'}
__foo__
:一种约定,Python内部的名字,用来区别其他用户自定义的命名,以防冲突,就是例如__init__()
,__del__()
,__call__()
这些特殊方法
_foo
:一种约定,用来指定变量私有.程序员用来指定私有变量的一种方式.不能用from module import * 导入,其他方面和公有一样访问;
__foo
:这个有真正的意义:解析器用_classname__foo
来代替这个名字,以区别和其他类相同的命名,它无法直接像公有成员一样随便访问,通过对象名._类名__xxx这样的方式可以访问.
详情见:http://stackoverflow.com/questions/1301346/the-meaning-of-a-single-and-a-double-underscore-before-an-object-name-in-python
或者: http://www.zhihu.com/question/19754941
.format在许多方面看起来更便利.对于%
最烦人的是它无法同时传递一个变量和元组.你可能会想下面的代码不会有什么问题:
"hi there %s" % name
但是,如果name恰好是(1,2,3),它将会抛出一个TypeError异常.为了保证它总是正确的,你必须这样做:
"hi there %s" % (name,) # 提供一个单元素的数组而不是一个参数
但是有点丑…format就没有这些问题.你给的第二个问题也是这样,.format好看多了.
你为什么不用它?
%
(issue #4))http://stackoverflow.com/questions/5082452/python-string-formatting-vs-format
这个是stackoverflow里python排名第一的问题,值得一看: http://stackoverflow.com/questions/231767/what-does-the-yield-keyword-do-in-python
这是中文版: http://taizilongxu.gitbooks.io/stackoverflow-about-python/content/1/README.html
这里有个关于生成器的创建问题面试官有考:
问: 将列表生成式中[]改成() 之后数据结构是否改变?
答案:是,从列表变为生成器
>>> L = [x*x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x*x for x in range(10))
>>> g
<generator object <genexpr> at 0x0000028F8B774200>
通过列表生成式,可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含百万元素的列表,不仅是占用很大的内存空间,如:我们只需要访问前面的几个元素,后面大部分元素所占的空间都是浪费的。因此,没有必要创建完整的列表(节省大量内存空间)。在Python中,我们可以采用生成器:边循环,边计算的机制—>generator
*args
and **kwargs
用*args
和**kwargs
只是为了方便并没有强制使用它们.
当你不确定你的函数里将要传递多少参数时你可以用*args
.例如,它可以传递任意数量的参数:
>>> def print_everything(*args):
for count, thing in enumerate(args):
... print '{0}. {1}'.format(count, thing)
...
>>> print_everything('apple', 'banana', 'cabbage')
0. apple
1. banana
2. cabbage
相似的,**kwargs
允许你使用没有事先定义的参数名:
>>> def table_things(**kwargs):
... for name, value in kwargs.items():
... print '{0} = {1}'.format(name, value)
...
>>> table_things(apple = 'fruit', cabbage = 'vegetable')
cabbage = vegetable
apple = fruit
你也可以混着用.命名参数首先获得参数值然后所有的其他参数都传递给*args
和**kwargs
.命名参数在列表的最前端.例如:
def table_things(titlestring, **kwargs)
*args
和**kwargs
可以同时在函数的定义中,但是*args
必须在**kwargs
前面.
当调用函数时你也可以用*
和**
语法.例如:
>>> def print_three_things(a, b, c):
... print 'a = {0}, b = {1}, c = {2}'.format(a,b,c)
...
>>> mylist = ['aardvark', 'baboon', 'cat']
>>> print_three_things(*mylist)
a = aardvark, b = baboon, c = cat
就像你看到的一样,它可以传递列表(或者元组)的每一项并把它们解包.注意必须与它们在函数里的参数相吻合.当然,你也可以在函数定义或者函数调用时用*.
http://stackoverflow.com/questions/3394835/args-and-kwargs
这个AOP一听起来有点懵,同学面阿里的时候就被问懵了…
装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志、性能测试、事务处理等。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。
这个问题比较大,推荐: http://stackoverflow.com/questions/739654/how-can-i-make-a-chain-of-function-decorators-in-python
中文: http://taizilongxu.gitbooks.io/stackoverflow-about-python/content/3/README.html
“当看到一只鸟走起来像鸭子、游泳起来像鸭子、叫起来也像鸭子,那么这只鸟就可以被称为鸭子。”
我们并不关心对象是什么类型,到底是不是鸭子,只关心行为。
比如在python中,有很多file-like的东西,比如StringIO,GzipFile,socket。它们有很多相同的方法,我们把它们当作文件使用。
又比如list.extend()方法中,我们并不关心它的参数是不是list,只要它是可迭代的,所以它的参数可以是list/tuple/dict/字符串/生成器等.
鸭子类型在动态语言中经常使用,非常灵活,使得python不想java那样专门去弄一大堆的设计模式。
引自知乎:http://www.zhihu.com/question/20053359
函数重载主要是为了解决两个问题。
另外,一个基本的设计原则是,仅仅当两个函数除了参数类型和参数个数不同以外,其功能是完全相同的,此时才使用函数重载,如果两个函数的功能其实不同,那么不应当使用重载,而应当使用一个名字不同的函数。
好吧,那么对于情况 1 ,函数功能相同,但是参数类型不同,python 如何处理?答案是根本不需要处理,因为 python 可以接受任何类型的参数,如果函数的功能相同,那么不同的参数类型在 python 中很可能是相同的代码,没有必要做成两个不同函数。
那么对于情况 2 ,函数功能相同,但参数个数不同,python 如何处理?大家知道,答案就是缺省参数。对那些缺少的参数设定为缺省参数即可解决问题。因为你假设函数功能相同,那么那些缺少的参数终归是需要用的。
好了,鉴于情况 1 跟 情况 2 都有了解决方案,python 自然就不需要函数重载了。
这个面试官问了,我说了老半天,不知道他问的真正意图是什么.
stackoverflow
这篇文章很好的介绍了新式类的特性: http://www.cnblogs.com/btchenguang/archive/2012/09/17/2689146.html
新式类很早在2.2就出现了,所以旧式类完全是兼容的问题,Python3里的类全部都是新式类.这里有一个MRO问题可以了解下(新式类继承是根据C3算法,旧式类是深度优先),
一个旧式类的深度优先的例子
class A():
def foo1(self):
print "A"
class B(A):
def foo2(self):
pass
class C(A):
def foo1(self):
print "C"
class D(B, C):
pass
d = D()
d.foo1()
# A
按照经典类的查找顺序从左到右深度优先
的规则,在访问d.foo1()
的时候,D这个类是没有的…那么往上查找,先找到B,里面没有,深度优先,访问A,找到了foo1(),所以这时候调用的是A的foo1(),从而导致C重写的foo1()被绕过
__new__
和__init__
的区别这个__new__
确实很少见到,先做了解吧.
__new__
是一个静态方法,而__init__
是一个实例方法.__new__
方法会返回一个创建的实例,而__init__
什么都不返回.__new__
返回一个cls的实例时后面的__init__
才能被调用.__new__
,初始化一个实例时用__init__
.http://stackoverflow.com/questions/674304/pythons-use-of-new-and-init
ps: __metaclass__
是创建类时起作用.所以我们可以分别使用__metaclass__
,__new__
和__init__
来分别在类创建,实例创建和实例初始化的时候做一些小手脚.
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统资源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
__new__()
在__init__()
之前被调用,用于生成实例对象。利用这个方法和类的属性的特点可以实现设计模式的单例模式。单例模式是指创建唯一对象,单例模式设计的类只能实例
这个绝对常考啊.绝对要记住1~2个方法,当时面试官是让手写的.