- 基于社交网络算法优化的二维最大熵图像分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法php开发语言
智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码文章目录智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码1.前言2.二维最大熵阈值分割原理3.基于社交网络优化的多阈值分割4.算法结果:5.参考文献:6.Matlab代码摘要:本文介绍基于最大熵的图像分割,并且应用社交网络算法进行阈值寻优。1.前言阅读此文章前,请阅读《图像分割:直方图区域划分及信息统计介绍》htt
- 神经网络-损失函数
红米煮粥
神经网络人工智能深度学习
文章目录一、回归问题的损失函数1.均方误差(MeanSquaredError,MSE)2.平均绝对误差(MeanAbsoluteError,MAE)二、分类问题的损失函数1.0-1损失函数(Zero-OneLossFunction)2.交叉熵损失(Cross-EntropyLoss)3.合页损失(HingeLoss)三、总结在神经网络中,损失函数(LossFunction)扮演着至关重要的角色,它
- 自信
净域
今天我打击了某人的自信我的自信回来了损有余而补不足不得不说我喜欢这个特殊的正能量不是会放大缩小而是类似熵平衡的那种奇怪的平衡
- 几率odds与逻辑回归
元气小地瓜
https://www.jianshu.com/p/aa73938f32ee几率odds从Odds角度理解LogisticRegression模型的参数13December20151.引言无论在学术界,还是在工业界,LogisticRegression(LR,逻辑回归)模型[1]是常用的分类模型,被用于各种分类场景和点击率预估问题等,它也是MaxEntropy(ME,最大熵)模型[2],或者说So
- 毕设项目 基于特征熵值分析的网站分类系统实现(源码+论文)
iuidfds
毕业设计毕设
文章目录0项目说明1研究目的2研究方法3研究结论4各模块介绍4.1爬虫模块功能与技术4.2网页处理模块功能与技术4.3特征提取与文本特征表示模块功能与技术4.4分类器模块功能与技术5项目源码6论文目录7最后0项目说明基于特征熵值分析的网站分类系统实现提示:适合用于课程设计或毕业设计,工作量达标,源码开放1研究目的本设计对KNN算法的缺陷产生原因进行详细地分析,并针对缺陷对算法进行了引入属性熵值等一
- 【机器学习】4 ——熵
qq_43507078
我的机器学习机器学习人工智能
机器学习4——熵文章目录机器学习4——熵前言前言熵衡量随机变量不确定性,由克劳德·香农(ClaudeShannon)在1948年提出,称为香农熵。反映了一个系统中信息的混乱程度或信息量。其定义为:H(P)=−∑xP(x)logP(x)H(P)=-\sum_{x}^{}P(x)logP(x)H(P)=−x∑P(x)logP(x)其中:X是一个随机变量,它有种可能的取值P(x)是X取值为x的概率。熵H
- 最大熵模型(Maximum entropy model)
Fang Suk
机器学习最大熵模型最大熵最大熵原理指数族分布
最大熵模型(Maximumentropymodel)本文你将知道:什么是最大熵原理,最大熵模型最大熵模型的推导(约束最优化问题求解)最大熵模型的含义与优缺点1最大熵原理最大熵原理:在满足已知约束条件的模型集合中,选择熵最大的模型。熵最大,对应着随机性最大。最大熵首先要满足已知事实,对于其他未知的情况,不做任何的假设,认为他们是等可能性的,此时随机性最大。2最大熵模型最大熵原理是统计学习的一般原理,
- 两种常用损失函数:nn.CrossEntropyLoss 与 nn.TripletMarginLoss
大多_C
人工智能算法python机器学习
两种用于模型训练的损失函数:nn.CrossEntropyLoss和nn.TripletMarginLoss。它们在对比学习和分类任务中各自扮演不同的角色。接下来是对这两种损失函数的详细介绍。1.nn.CrossEntropyLossnn.CrossEntropyLoss是PyTorch提供的交叉熵损失函数,通常用于多分类任务中。它结合了softmax激活函数和负对数似然损失(NegativeLo
- Focal Loss的简述与实现
友人Chi
人工智能机器学习深度学习
文章目录交叉熵损失函数样本不均衡问题FocalLossFocalLoss的代码实现交叉熵损失函数Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)Loss=L(y,\hat{p})=-ylog(\hat{p})-(1-y)log(1-\hat{p})Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)其中p^\hat{p}p^为预测概率大小。此处的交叉
- 数学建模-基于熵权法对Topsis模型的修正
啥都想学点的研究生
矩阵线性代数
topsis模型赋予权重有层次分析法,但层次分析法也有其弊端。层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)针对层次分析法主观性太强的弊端,我们可以采用熵权法给topsis评价模型的各个指标赋权。如何度量信息量的大小,以小明和小王的例子为例:建立信息量I(x)和P(x)之间的关系:信息熵的定义:信息熵越大,信息量是越大还是越小呢
- 不远万里来到云南瑞丽只为一块翡翠原石,它又怎么舍得让你失望!
和风不一样的孩纸
相信大家对木那这个场口并不陌生,这个场口的翡翠原石还是许多资深老玩家的最爱,木那场口出过的好货可以说是数不胜数。一小伙对云南的赌石特别感兴趣,特地从鸡头(黑龙江)来到了鸡尾(云南),小编特地上百度查了一下距离,3846.1公里,这应该只是到昆明的距离吧,再加上昆明到瑞丽七百多公里,大家可想而知,就算坐飞机也得七八小时呢,更何况中间还要转车站,小编卫星:15...9875...712...31在这里
- 2021-07-23——第23课:每个人的生命中需要一名个人成长教练——学习打卡
a吃饭
有几年时间,我都是掉到自己的情绪和事件里面,一直没跳出来。每次鼓起信念去坚持,然后遇到点什么情绪,就被打败了。一段时间后又鼓起勇气去尝试,然后发生了点什么事,就又被打败了。就这样反反复复几年后,我加入了007,7天写一篇的节奏,不快,但是有时候我还是很艰难才坚持下来,但是一年多后,我发现我可以很轻松了。就像现在,我已经做到日更一百多天了。我才发现,我是受到了007里正向人的影响。以前闭门造车,熵不
- 如何利用python实现碰撞原理
加密社
福利资源区块链python开发语言
先看图跑了大概一天这是结果具体是通过BIP39规则生成的种子数据生成完词组后,再根据词组生成姨太地址#生成随机助记词defgenerate_mnemonic():entropy=os.urandom(16)#随机生成16字节熵mnemonic=[]foriinrange(12):#生成12个助记词word_index=int.from_bytes(entropy[i:i+1],'big')%len
- 《逆熵增成长之路》:如何让学到的知识更有价值?
米卡写作
今天继续阅读《逆熵增成长之路》第六章:输入-思考-思考篇,有以下3个感悟,分享给大家。1.什么样的知识值得学?2.如何提高学习效率?3.如何让知识变得更有价值?认真看完,你一定会有所收获。01.什么样的知识值得学?人们常说:你接触什么样的信息,决定你成为什么样的人。这就需要我们控制好自己的信息输入源,包括看什么书、关注什么样的公众号、视频号等。那什么是好的信息输入源呢?《逆熵增成长之路》上提到的4
- 2014/2015年Mac Pro连接LG Ultra HD显示器刷新率低(30Hz)问题解决
namjagbrawa
Mac型号:2015年MacPro15寸显示器型号:LGUltraHD支持4k显示问题:使用显示器原厂提供HDMI—HDMI线连接MacHDMI接口和显示器的HDMI接口,显示正常,分辨率可调,正常,显示器刷新率最高30Hz,导致鼠标有延时,使用起来不舒服。尝试:使用Mac雷电口转HDMI线(自购,绿联),显示模糊,不瑞丽,比起上面一种方式,显示效果差,刷新率50Hz或60Hz(记不清了),鼠标没
- 学习日志6
Simon#0209
学习
关于量子强化学习:论文Variational_Quantum_Circuits_for_Deep_Reinforcement_Learning:变分量子电路在深度强化学习中的应用论文主要内容:将经典深度强化学习算法(如经验重放和目标网络)重塑为变分量子电路的表示摘要当前最先进的机器学习方法基于经典冯·诺伊曼计算架构,并在许多工业和学术领域得到广泛应用。随着量子计算的发展,研究人员和技术巨头们试图为
- 决策树(decision tree)
a15957199647
机器学习数据
决策树就是像树结构一样的分类下去,最后来预测输入样本的属于那类标签。本文是本人的学习笔记,所以有些地方也不是很清楚。大概流程就是1.查看子类是否属于同一个类2.如果是,返回类标签,如果不是,找到最佳的分类子集的特征3.划分数据集4.创建分支节点5.对每一个节点重复上述步骤6.返回树首先我们要像一个办法,怎么来确定最佳的分类特征就是为什么要这么划分子集。一般有三种方法:1.Gini不纯度2.信息熵3
- 心熵,心流,以及复盘3R
热血青年John
今天学到了两个新词汇---心熵和心流。用自己的话来反馈一下。在化学反应体系里,熵值越大,反应越不稳定。大脑思维不集中的时候瞻前顾后,或者思维活跃的有些可怕一会儿思考宇宙尽头人类与黑洞的联系一会儿纠结待会儿吃啥,大脑处于一种混乱状态,意识里可能只有几个念头,但潜意识里可能有多得多的念头在相互碰撞,争夺者你的注意力和大脑的控制权,这时候你的大脑就像是一个热气膨胀的锅,里面的热烫的气体肆意翻腾,照顾之间
- 机器学习和深度学习中常见损失函数,包括损失函数的数学公式、推导及其在不同场景中的应用
早起星人
机器学习深度学习人工智能
目录引言什么是损失函数?常见损失函数介绍3.1均方误差(MeanSquaredError,MSE)3.2交叉熵损失(Cross-EntropyLoss)3.3平滑L1损失(SmoothL1Loss)3.4HingeLoss(合页损失)3.5二进制交叉熵损失(BinaryCross-EntropyLoss)3.6KL散度(KLDivergence)3.7Huber损失(HuberLoss)3.8对比
- 带您寻找瑞丽那些好玩的去处
月出层云
在瑞丽久了,有人会心悦它的美食,撒撇,野生菌,牛肉干巴,各种野菜,百吃不厌。有人沉醉它的热闹,泼水节,选美节,目瑙纵歌,让人有了狂欢放纵的理由。而我比较流连它轮转的四季,春华秋实,夏凉冬暖,草木悄然生长,等您寻见。弄莫湖瑞丽的早晨,太阳升起的时间较晚,只要不下雨,就去弄莫湖公园跑一圈,绕公园一周大概三公里,周边平坦,视野相当开阔。跑步途中太阳从东边升起,就能见到西北边山上从山头逐渐被点亮,一层层的
- BCEWithLogitsLoss
hero_hilog
算法pytorch
BCEWithLogitsLoss是PyTorch深度学习框架中的一个损失函数,用于二元分类问题。它结合了Sigmoid激活函数和二元交叉熵损失(BinaryCrossEntropyLoss),使得在训练过程中更加数值稳定。特点:数值稳定性:直接使用Sigmoid函数后跟BCE损失可能会遇到数值稳定性问题,特别是当输入值非常大或非常小的时候。BCEWithLogitsLoss通过内部使用Logi
- 数学基础 -- 梯度下降算法
sz66cm
算法人工智能数学基础
梯度下降算法梯度下降算法(GradientDescent)是一种优化算法,主要用于寻找函数的局部最小值或全局最小值。它广泛应用于机器学习、深度学习以及统计学中,用于最小化损失函数或误差函数。梯度下降的基本概念梯度下降算法通过以下步骤工作:初始化参数:随机初始化模型的参数(如权重和偏差),也可以用特定的策略初始化。计算损失:对当前模型输出和实际目标值计算损失(如均方误差、交叉熵等)。计算梯度:计算损
- 港股打新 12月17日 打新早报
d76e7c4ef49a
【港股招股】汇森家居02127招股价1.57-1.86元一手金额3757.49元瑞丽医美02135招股价0.3-0.4元一手金额4040.31元清科创业01945招股价9-11元一手金额4444.34元CGIIHLDGS01940招股价1.37-1.77元一手金额3575.68元【港股暗盘】VESYNC02148招股上线定价5.52元认购倍数538倍申购75手稳获1手一手金额中签率1.54%回拨率
- 心慈佛相
解姿丁
“善念产生那一刻,已经是佛。”图片来自落网俗语说:求人一命,胜造七级浮屠。但如果没救成呢?瑞丽同志身宽体胖,慈眉善目,火热心肠。颧骨两处总是红扑扑的,肚子圆乎乎的,笑起来眼睛弯弯的,认识她的人都说她长得一副佛相,真有福气,我偏要说她长得特喜庆。十几年前的夏天,家里的狗狗丢了。晚上,瑞丽同志拗不过我,牵着我的手出门去找。我们一路从家里走到郊区,夜晚野外的虫鸣声特别清晰,蚊子又大又猖狂,在黑暗中张牙舞
- 一屋不扫,何以扫天下
活着不易
“一屋不扫,何以扫天下”这篇作文在我初中的时候就写过,无非是人首先要修炼自己,自身本领强,方能打天下。人应该有自己的良好习惯、行为举止,包括处所洁净........如今看来当时我是懂了道理,却并不深刻。人到中年方知“使熵值减小”的人才能自食其力、有所成就、有所作为。只有不断对自己整合,才能不断进步和接近完美。而熵是什么?熵即混乱度,越混乱熵值就会越大。一个人总是乱糟糟的,毫无计划,东西乱放,衣服乱
- 2019给吴军老师的第一封信
启航_FLY
吴军老师好:所谓信息的相关性,可以从宏观和微观两个角度思考。从宏观的角度上讲就是要把信息放到系统中去思考。因为在系统中信息的形态是不断变化的,这一点对于使用信息,继而要认识、利用和改变系统的人是十分重要的,信息的形式虽然分散,但基于某种原因,却往往能在有意无意间汇聚成一条条或大或小的脉络,其核心正是老师提到的人类认知世界的本源。物质也好,能量也罢,在历史的演化中都逃不过一个目的性。因为信息负熵迫使
- 王晓芳在增长势能课上提到的这个定律,为什么让全宇宙都绝望?
晓芳聊职场
王晓芳在增长势能课上提到的这个定律,为什么让全宇宙都绝望?企业家最深的痛就是增长乏力---王晓芳授课老师|王晓芳壹创新商学创办人2019年壹创新商学课上,王晓芳教授分享了“熵增定律”,同时以华为为例,讲述了企业管理是如何通过“耗散结构”进行“反熵增”,从而活下去。熵增定律,也叫“热力学第二定律”。这是德国人克劳修斯提出的理论,最初用于揭示事物总是向无序的方向的发展、以及“孤立系统下热量从高温物体流
- 五古•咏史之三十二 秋瑾
村居闲人
(二零一八年五月二十六日•瑞丽)英侠鉴湖女,临难潇湘雄。书剑习闺院,枪戈覆龙庭。涉海结志士,举义痛垂成。但听轩亭口,秋风秋雨声。注:辛亥革命女杰秋瑾,少习书剑,留日交黄兴等。起义事败不去,决殉难。书“秋风秋雨愁煞人”,就义轩亭口。活动于绍兴、湖南,被誉“鉴湖女侠”、“潇湘女杰”。
- 将自己产品化
飞叶灵
今天开始读《纳瓦尔宝典》,文章开篇的核心,人生应该让自己走思维体系和思维模式更新之路。在各个学科中建立自己的思维体系,高数中微积分的思维体系,大物中的熵的思维体系,《道德经》中天人合一,道法自然体系等等。像樊登老师最喜欢提及的认知ABC的看法模型一样,我们需要在各种知识、宗教、娱乐中学习提升自己看到每一件事情发生的产生的影响的看法B,通过看法B把那些不如意的事情看到背后的祝福……这不由让我想起了,
- 基于熵权法对Topsis模型的修正
钰见梵星
数学建模算法
基于熵权法对Topsis模型的修正有n个要评价的对象,m个评价指标的标准化矩阵,可以使用层次分析法给这m个评价指标确定权重∑j=1mωj=1\sum_{j=1}^m{\omega_j}=1j=1∑mωj=1层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)熵权法是一种客观赋权方法依据的原理:指标的变异程度越小,所反映的信息量也越少,
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象