摘抄自廖雪峰Python教程
异步IO
异步IO模型需要一个消息循环,在消息循环中,主线程不断地重复“读取消息-处理消息”这一过程:
loop = get_event_loop()
while True:
event = loop.get_event()
process_event(event)
协程
又称微线程,Coroutine
协程切换不是线程切换,而是由程序自身控制,因此,没有线程切换的开销,和多线程相比,线程数量越多,协程的性能优势越明显。
另一优势就是不需要多线程的锁机制。
Python对协程的支持是通过generator来实现的
generator中,可以通过for
循环来迭代,也可以不断通过next()
函数获取有yield
语句返回的下一个值。
一个示例,传统的生产者-消费者模型是一个线程写消息,一个线程读取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。
改用协程,生产者生产消息后,直接通过yield
跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高:
def consumer():
r = ''
while True:
n = yield r
if not n:
return
print('[CONSUMER] Consuming %s...' % n)
r = '200 0K'
def produce(c):
c.send(None)
n = 0
while n < 5:
n = n + 1
print('[PRODUCER] Producing %s...' % n)
r = c.send(n)
print('[PRODUCER] Consumer return: %s' % r)
c.close()
c = consumer()
produce(c)
执行结果:
[PRODUCER] Producing 1...
[CONSUMER] Consuming 1...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 2...
[CONSUMER] Consuming 2...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 3...
[CONSUMER] Consuming 3...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 4...
[CONSUMER] Consuming 4...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 5...
[CONSUMER] Consuming 5...
[PRODUCER] Consumer return: 200 OK
注意到consumer
函数是一个generator
,把一个consumer
传入produce
后:
- 首先调用
c.send(None)
启动生成器; - 然后,一旦生产了东西,通过
c.send(n)
切换到consumer
执行; consumer
通过yield
拿到消息,处理,又通过yield
把结果传回;produce
拿到consumer
处理的结果,继续生产下一条消息;produce
决定不生产了,通过c.close()
关闭consumer
,整个过程结束。
整个流程无锁,由一个线程执行,produce
和consumer
协作完成任务,所以称为“协程”,而非线程的抢占式多任务。
asyncio
asyncio
的编程模型就是一个消息循环。
从asyncio
模块中直接获取一个EventLoop
的引用,然后把需要执行的协程推到EventLoop
中执行,就实现了异步IO。
用asyncio
实现Hello world
代码如下:
import asyncio
@asyncio.coroutine
def hello():
print("Hello world!")
# 异步调用asyncio.sleep(1)
r = yield from asyncio.sleep(1)
print("Hello again!")
# 获取EventLoop:
loop = asyncio.get_event_loop()
# 执行coroutine:
loop.run_until_complete(hello())
loop.close()
@asyncio.coroutine
把一个generator标记为coroutine类型,然后,我们就把这个coroutine
扔到EventLoop
中执行。
hello()
会首先打印出Hello world!
,然后,yield from
语法可以让我们方便地调用另一个generator
。由于asyncio.sleep()
也是一个coroutine
,所以线程不会等待asyncio.sleep()
,而是直接中断并执行下一个消息循环。当asyncio.sleep()
返回时,线程就可以从yield from
拿到返回值(此处是None
),然后接着执行下一行语句。
把asyncio.sleep(1)
看成是一个耗时1秒的IO操作,在此期间,主线程并未等待,而是去执行EventLoop
中其他可以执行的coroutine
了,因此可以实现并发执行。
我们用Task封装两个coroutine
试试:
import threading
import asyncio
@asyncio.coroutine
def hello():
print('Hello world! (%s)' % threading.currentThread())
yield from asyncio.sleep(1)
print('Hello again! (%s)' % threading.currentThread())
loop = asyncio.get_event_loop()
tasks = [hello(), hello()]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()
观察执行过程:
Hello world! (<_MainThread(MainThread, started 140735195337472)>)
Hello world! (<_MainThread(MainThread, started 140735195337472)>)
(暂停约1秒)
Hello again! (<_MainThread(MainThread, started 140735195337472)>)
Hello again! (<_MainThread(MainThread, started 140735195337472)>)
由打印的当前线程名称可以看出,两个coroutine
是由同一个线程并发执行的。
如果把asyncio.sleep()
换成真正的IO操作,则多个coroutine
就可以由一个线程并发执行。
我们用asyncio
的异步网络连接来获取sina、sohu和163的网站首页:
import asyncio
@asyncio.coroutine
def wget(host):
print('wget %s...' % host)
connect = asyncio.open_connection(host, 80)
reader, writer = yield from connect
header = 'GET / HTTP/1.0\r\nHost: %s\r\n\r\n' % host
writer.write(header.encode('utf-8'))
yield from writer.drain()
while True:
line = yield from reader.readline()
if line == b'\r\n':
break
print('%s header > %s' % (host, line.decode('utf-8').rstrip()))
# Ignore the body, close the socket
writer.close()
loop = asyncio.get_event_loop()
tasks = [wget(host) for host in ['www.sina.com.cn', 'www.sohu.com', 'www.163.com']]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()
执行结果如下:
wget www.sohu.com...
wget www.sina.com.cn...
wget www.163.com...
(等待一段时间)
(打印出sohu的header)
www.sohu.com header > HTTP/1.1 200 OK
www.sohu.com header > Content-Type: text/html
...
(打印出sina的header)
www.sina.com.cn header > HTTP/1.1 200 OK
www.sina.com.cn header > Date: Wed, 20 May 2015 04:56:33 GMT
...
(打印出163的header)
www.163.com header > HTTP/1.0 302 Moved Temporarily
www.163.com header > Server: Cdn Cache Server V2.0
...
可见3个连接由一个线程通过coroutine
并发完成。
小结
asyncio
提供了完善的异步IO支持;
异步操作需要在coroutine
中通过yield from
完成;
多个coroutine
可以封装成一组Task然后并发执行。
async/await
用asyncio
提供的@asyncio.coroutine
可以把一个generator标记为coroutine类型,然后在coroutine内部用yield from
调用另一个coroutine实现异步操作
为了简化并更好地标识异步IO,Python 3.5开始,引入了新的语法async
和await
。
async
和await
是针对coroutine的新语法:
(1)把@asyncio.coroutine
替换为async
;
(2)把yield from
替换成await
示例:
@asyncio.coroutine
def hello1():
print("Hello world!")
r = yield from asyncio.sleep(1)
print("Hello again!")
async def hello2():
print("Hello world!")
r = await asyncio.sleep(1)
print("Hello again!")
aiohttp
asyncio
可以实现单线程并发IO操作
将asyncio
运用到服务器段,可以用单线程+coroutine实现多用户的高并发支持
asyncio
实现了TCP、UDP、SSL等协议,aiohttp
是基于asyncio
实现的HTTP框架
编写一个HTTP服务器,分别处理以下URL:
/
- 首页返回b'
;Index
'/hello/{name}
- 根据URL参数返回文本hello, %s!
。
代码如下:
import asyncio
from aiohttp import web
async def index(request):
await asyncio.sleep(0.5)
return web.Response(body=b'Index
')
async def hello(request):
await asyncio.sleep(0.5)
text = 'hello, %s!
' % request.match_info['name']
return web.Response(body=text.encode('utf-8'))
async def init(loop):
app = web.Application(loop=loop)
app.router.add_route('GET', '/', index)
app.router.add_route('GET', '/hello/{name}', hello)
srv = await loop.create_server(app.make_handler(), '127.0.0.1', 8000)
print('Server started at http://127.0.0.1:8000...')
return srv
loop = asyncio.get_event_loop()
loop.run_until_complete(init(loop))
loop.run_forever()
注意aiohttp
的初始化函数init()
也是一个coroutine
,loop.create_server()
则利用asyncio
创建TCP服务。