- AI人工智能遇上TensorFlow:技术融合新趋势
AI大模型应用之禅
人工智能tensorflowpythonai
AI人工智能遇上TensorFlow:技术融合新趋势关键词:人工智能、TensorFlow、深度学习、神经网络、机器学习、技术融合、AI开发摘要:本文深入探讨了人工智能技术与TensorFlow框架的融合发展趋势。我们将从基础概念出发,详细分析TensorFlow在AI领域的核心优势,包括其架构设计、算法实现和实际应用。文章包含丰富的技术细节,如神经网络原理、TensorFlow核心算法实现、数学
- 【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
1989
0基础学AI人工智能生成对抗网络神经网络python机器学习近邻算法深度学习
本节课你将学到GAN的基本原理和工作机制使用PyTorch构建生成器和判别器DCGAN架构实现技巧训练GAN模型的实用技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtorchvisionmatplotlibnumpyGPU推荐(可大幅加速训练)前置知识第21讲TensorFlow基础第23讲神经网络原理基本PyTorch使用经验核心概念什么是GAN?GAN就像
- 【深度学习-Day 35】实战图像数据增强:用PyTorch和TensorFlow扩充你的数据集
吴师兄大模型
深度学习入门到精通深度学习pytorchtensorflow人工智能python大模型LLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 基于Abp Vnext、FastMCP构建一个企业级的模型即服务(MaaS)平台方案
NetX行者
AbpvnextMaasAbpvnextFastMCP企业级平台解决方案开源python
企业级MaaS平台技术可行性分析报告一、总体技术架构HTTP/WebSocketgRPC/RESTgRPC/RESTgRPCVue3前端ABPvNextAPI网关.NET9业务微服务ABPvNextMCPClientFastMCP模型仓库PyTorch/TensorFlowHuggingFaceHeyGem/ChatGLM自定义模型统一鉴权中心二、核心框架与中间件组件技术选型官方链接作用前端框架V
- 服务器无对应cuda版本安装pytorch-gpu[自用]
片月斜生梦泽南
pytorch
服务器无对应cuda版本安装pytorch-gpu服务器无对应cuda版本安装pytorch-gpu网址下载非root用户安装tmux查看服务器ubuntu版本conda安装tensorflow-gpu安装1.x版本服务器无对应cuda版本安装pytorch-gpu网址GPU版本的pytorch、pytorchvision的下载链接https://download.pytorch.org/whl/
- Ubuntu下安装多版本CUDA及灵活切换全攻略
芯作者
D2:ubuntulinuxubuntu
——释放深度学习潜能,告别版本依赖的烦恼!**为什么需要多版本CUDA?在深度学习、科学计算等领域,不同框架(TensorFlow、PyTorch等)对CUDA版本的要求各异。同时升级框架或维护旧项目时,版本冲突频发。多版本CUDA共存+一键切换是高效开发的刚需!本文将手把手教你实现这一能力,并分享独创的“动态软链接+环境隔离”技巧,让版本管理行云流水!环境准备硬件要求NVIDIA显卡(支持CUD
- ubuntu22.04从新系统到tensorflow GPU支持
澍龑
tensorflow人工智能
ubuntu22.04CUDA从驱动到tensorflow安装0系统常规设置和软件安装0.1挂载第二硬盘默认Home0.2软件安装0.3安装指定版本的python0.4python虚拟环境设置1直接安装1.1配置信息1.2驱动安装1.3集显显示,独显运算(其它debug用)1.4卸载驱动(备用,未试)日常使用ssh后台运行(断联不中断)0系统常规设置和软件安装0.1挂载第二硬盘默认Homesudo
- 【零基础学AI】第27讲:注意力机制(Attention) - 机器翻译实战
1989
0基础学AI人工智能机器翻译自然语言处理pythontensorflow机器学习神经网络
本节课你将学到理解注意力机制的核心思想掌握注意力计算的数学原理实现基于注意力机制的Seq2Seq模型构建英语到法语的神经翻译系统开始之前环境要求Python3.8+需要安装的包:tensorflow==2.8.0numpy==1.21.0matplotlib==3.4.0pandas==1.3.0前置知识RNN/LSTM原理(第26讲)序列数据处理(第26讲)自然语言处理基础(第14讲)核心概念为
- TensorFlow图神经网络(GNN)入门指南
AI天才研究院
AI人工智能与大数据tensorflow神经网络人工智能ai
TensorFlow图神经网络(GNN)入门指南关键词:TensorFlow、图神经网络、GNN、深度学习、图数据、节点嵌入、图卷积网络摘要:本文全面介绍如何使用TensorFlow实现图神经网络(GNN)。我们将从图数据的基本概念开始,深入探讨GNN的核心原理,包括图卷积网络(GCN)、图注意力网络(GAT)等流行架构,并通过TensorFlow代码示例展示如何构建和训练GNN模型。文章还将涵盖
- mediapipe流水线分析 三
江太翁
AndroidNDK人工智能mediapipeandroid
目标检测Graph一流水线上游输入处理1TfLiteConverterCalculator将输入的数据转换成tensorflowapi支持的TensorTfLiteTensor并初始化相关输入输出节点,该类的业务主要通过interpreterstd::unique_ptrtflite::Interpreterinterpreter_=nullptr;实现类完成数据在cpu/gpu上的推理1.1Tf
- JuPyter(IPython) Notebooks中使用pip安装Python的模块
weixin_34218890
开发工具python人工智能
问题描述:没有带GPU的电脑,搞深度学习不是耍流氓嘛,我网上看到有个云平台,免费使用了一下,小姐姐很热情。使用过程如下:他们给的接口是Jupyter编辑平台,我就在上面跑了一个小例子。tensorflow和python环境是他们配置好的,不过我的例子中需要导入matplotlib.pylot模块。可是他们没有提供,怎么办呢?网上查了一下啊解决方法:采用如下方法:importpipdefMyPipi
- TensorFlow武林志 第一卷:入门篇 - 初入江湖 第一章:真气初现
空中湖
tensorflow武林志tensorflow人工智能python
第一卷:入门篇-初入江湖第一章:真气初现林枫揉了揉酸痛的胳膊,将最后一捆柴火堆放在灶房角落。这是他来到青霄剑宗做杂役的第三个月,每日劈柴挑水的生活让他原本白皙的皮肤变得黝黑粗糙。"喂,新来的!掌门要的热水怎么还没送去?"门外传来管事的呵斥声。"马上就好!"林枫急忙提起铜壶,滚烫的热水溅在他手背上,他却浑然不觉疼痛。自从上月在后山偶然吞服了那枚奇异的朱果后,他对冷热疼痛的感知就变得异常迟钝。穿过曲折
- TensorFlow 零基础入门:手把手教你跑通第一个AI模型
蓑笠翁001
人工智能人工智能tensorflowpython机器学习深度学习分类
今天用最直白的语言,带完全零基础的同学走进TensorFlow的世界。不用担心数学公式,先学会"开车",再学"造车"!1.准备工作:安装TensorFlow就像玩游戏需要先安装游戏客户端一样,我们需要先安装TensorFlow。打开你的电脑(Windows/Mac都行),按下Win+R,输入cmd打开命令提示符,然后输入:pipinstalltensorflow看到"Successfullyins
- 「日拱一码」017 深度学习常用库——TensorFlow
目录基础操作张量操作:tf.constant用于创建常量张量tf.Variable用于创建可训练的变量张量tf.reshape可改变张量的形状tf.concat可将多个张量沿指定维度拼接tf.split则可将张量沿指定维度分割数学运算:tf.add张量的加运算tf.subtract张量的减运算tf.multiply张量的乘运算tf.divide张量的除运算tf.pow计算张量的幂tf.sqrt计算
- 强化学习【chapter0】-学习路线图
明朝百晓生
算法人工智能机器学习
前言:主要总结一下西湖大学赵老师的课程【强化学习的数学原理】课程:从零开始到透彻理解(完结)_哔哩哔哩_bilibili1️⃣基础阶段(Ch1-Ch7):掌握表格型算法,理解TD误差与贝尔曼方程2️⃣进阶阶段(Ch8-Ch9):动手实现DQN/策略梯度,熟悉PyTorch/TensorFlow3️⃣前沿阶段(Ch10:阅读论文(OpenAISpinningUp/RLlib文档)Chapter1:基
- 【深度学习pytorch-6】张量与numpy相互转换
超华东算法王
DL-pytorch深度学习pytorchnumpy
张量与Numpy数组之间的互相转换在深度学习中,张量(tensor)和Numpy数组(numpyarray)是两种常见的数据结构。张量通常用于深度学习框架(如PyTorch、TensorFlow等),而Numpy数组在科学计算中被广泛使用。为了便于数据处理和计算,常常需要在它们之间进行转换。下面介绍张量和Numpy数组之间的互相转换。1.PyTorch张量与Numpy数组的互相转换PyTorch提
- NumPy 或 PyTorch/TensorFlow 中的张量理解
栖霖涧
numpypytorchtensorflow
(2,2,3)形状的3D数组(或张量)的结构。个人理解:2个2维数组(张量),2维数组(张量)里面有2个1维向量(张量),1维向量(张量)里面有3个元素。注:由于最后一个维度值3代表的是元素个数,左侧括号后的第1个2代表的是第n-1个[(中括号,即n-1维数组)的数量,左侧括号后的第2个2代表的是第n-2个[(中括号,即n-2维数组)的数量。这段文字中,n代表的是数组的维度,这里是3维。维度解析:
- Tensorflow 回归模型 FLASK + DOCKER 部署 至 Ubuntu 虚拟机
准备工作:安装虚拟机,安装ubuntu,安装python3.x、pip和对应版本的tensorflow和其他库文件,安装docker。注意事项:1.windows系统运行的模型文件不能直接运行到虚拟机上,需在虚拟机上重新运行并生成模型文件2.虚拟机网络状态改为桥接Flask代码如下:fromflaskimportFlask,request,jsonifyimportpickleimportnump
- yolov算法详解_yolo 目标检测算法个人总结(yolov1)
CHAO JIANG
yolov算法详解
yolo目标检测算法个人总结目前yolo目标检测有两个版本,分别为v1和v2。因工作需要用yolo算法检测人物,所以这段时间重点看了这两篇论文,并实现了对应的tensorflow代码。这里记录下在论文阅读过程中的一些细节信息,留给自己,同时也希望各位能指出本人理解错误的地方,谢谢!一:yolov1关于yolov1算法的详解在网上已经非常多了,在这里我大概叙述下算法的流程,以及在开发过程中遇到的一些
- KANN 是一个独立的轻量级 C 语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括 LSTM 和 GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归等
一、软件介绍文末提供程序和源码下载KANN是一个独立的轻量级C语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括LSTM和GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归、共享权重和多个输入/输出/成本的拓扑复杂神经网络。与TensorFlow等主流深度学习框架相比,KANN的可扩展性较低,但它的灵活性接近,代码库要小得多,并且仅依赖于标准C库。与
- 在浏览器中使用TensorFlow.js
魏铁锤chui
tensorflowjavascript人工智能
TensorFlow.js简介介绍光学字符识别(OCR)是指能够从图像或文档中捕获文本元素,并将其转换为机器可读的文本格式的技术。如果您想了解更多关于这个主题的内容,本文是一个很好的介绍。TensorFlow.js是一个库,用于使用JavaScript开发和训练机器学习模型,并将其部署在浏览器中或Node.js上。您可以使用现有模型、转换PythonTensorFlow模型、使用迁移学习用您自己的
- 深刻解析如何解决在pycharm中导入tensorflow的子模块keras时的报错(导入语法正确)
lovingf
pycharmpythontensorflowkeras
只是导入时报错,但代码仍可以运行1.导入方式正确,但pycharm将其标红2.通过查看tensorflow的官方文件,猜测可能是python版本不适配python需为python3.6-3.9,而我的为python3.113.配置python3.9的环境(详情可看我的另一篇文章),但依然报错4.经过仔细分析,觉得可能是pycharm与tensorflow的适配问题,pycharm无法寻找到tens
- TensorFlow运行时核心:DirectSession::Run全解析
Jay Kay
tfservingc++tensorflow分布式
TensorFlow运行时核心:DirectSession::Run全解析TensorFlow的本地执行模式通过DirectSession::Run实现高效计算图处理,其核心流程分为三个阶段:图剪枝生成ClientGraph、设备间图分裂、跨设备并发执行。下面结合源码层设计深入剖析各环节实现原理。一、图剪枝:从FullGraph到ClientGraph目标:根据Session::Run指定的输入(
- 深入理解AI技术与实践:如何贡献代码
Wurenyu957
人工智能
在现代AI技术的开发过程中,贡献代码是推动项目发展、提升技术能力的重要方式。在这篇文章中,我们将结合AI技术实践,深入探讨如何有效地为开源项目贡献代码,尤其是那些使用AI模型的项目。技术背景介绍AI技术的迅猛发展得益于开源社区的共享和协作。诸如TensorFlow、PyTorch等开源框架,极大地降低了AI模型开发的门槛。与此同时,越来越多的项目通过GitHub等平台开放源码,接受来自全球开发者的
- TensorFlow:开启智能时代的引擎
科技林总
DeepSeek学AI人工智能
想象一下,计算机能看懂病历、汽车能自动驾驶、机器能创作艺术——这一切的核心,正是深度学习的力量。而推动这场革命的引擎之一,就是今天的主角:**TensorFlow**。---###**一、背景:为什么需要TensorFlow?1.**深度学习的爆发**-传统编程无法解决图像识别、自然语言处理等复杂问题。-神经网络需要高效工具处理海量数据和计算。2.**Google的答案**-2015年开源Tens
- DAY 43 复习日
yizhimie37
python训练营打卡笔记深度学习
@浙大疏锦行https://blog.csdn.net/weixin_45655710第一步:寻找并准备图像数据集在Kaggle等平台上,你可以找到大量用于图像分类任务的数据集,例如英特尔图像分类数据集(IntelImageClassification)或手写数字识别数据集(DigitRecognizer)。对于初学者,一个更便捷的选择是使用像TensorFlow或PyTorch这样深度学习框架内
- 用Tensorflow进行线性回归和逻辑回归(十)
lishaoan77
tensorflow线性回归tensorboard可视化
用TensorBoard可视化线性回归模型TensorBoard是一种可视化工具,用于了解、调试和优化模型训练过程。它使用在执行程序时编写的摘要事件。上面定义的模型使用tf.summary.FileWriter来写日志到日志目录/tmp/lr-train.我们可以用命令调用日志目录的TensorBoard,见Example3-13(TensorBoard已黙认安装与TensorFlow一起).Ex
- 强化学习 16G实践以下是基于CQL(Conservative Q-Learning)与QLoRA(Quantized Low-Rank Adaptation)结合的方案相关开源项目及资源,【ai技】
行云流水AI笔记
开源人工智能
根据你提供的CUDA版本(11.5)和NVIDIA驱动错误信息,以下是PyTorch、TensorFlow的兼容版本建议及环境修复方案:1.版本兼容性表框架兼容CUDA版本推荐安装命令(CUDA11.5)PyTorch11.3/11.6pipinstalltorchtorchvisiontorchaudio--extra-index-urlhttps://download.pytorch.org/
- TensorFlow Serving学习笔记3: 组件调用关系
一、整体架构TensorFlowServing采用模块化设计,核心组件包括:Servables:可服务对象(如模型、查找表)Managers:管理Servable生命周期(加载/卸载)Loaders:负责Servable的初始化状态管理Sources:提供新版本Servable的LoaderAspiredVersions:Servable的期望状态集合Core:连接所有组件的核心枢纽APIs:gR
- 【高频考点精讲】前端AI集成实战:从TensorFlow.js到模型部署
全栈老李技术面试
前端高频考点精讲前端javascripthtmlcss面试题reactvue
前端AI集成实战:从TensorFlow.js到模型部署作者:全栈老李更新时间:2025年5月适合人群:前端初学者、进阶开发者版权:本文由全栈老李原创,转载请注明出处。今天咱们聊聊前端工程师如何玩转AI——没错,用JavaScript就能搞机器学习!我是全栈老李,一个喜欢把复杂技术讲简单的实战派。最近发现不少前端同学对AI既好奇又害怕,其实真没想象中那么难,跟着老李走,30分钟让你亲手部署第一
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s