- 深度学习详解:通过案例了解机器学习基础
beist
深度学习机器学习人工智能
引言机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是现代人工智能领域中的两个重要概念。通过让机器具备学习的能力,机器可以从数据中自动找到函数,并应用于各种任务,如语音识别、图像识别和游戏对战等。在这篇笔记中,我们将通过一个简单的案例,逐步了解机器学习的基础知识。1.1机器学习案例学习1.1.1回归问题与分类问题在机器学习中,根据所要解决的问题类型,任务
- 深入浅出:KVM虚拟机连接LinuxBridge完全指南
来自于狂人
云计算
在虚拟化的世界里,网络连接如同现实世界的道路系统,而LinuxBridge就是那座关键的桥梁。本文将带你亲手搭建这座桥梁,让KVM虚拟机畅通无阻。一、核心概念:理解虚拟化网络的基石在动手配置前,我们需要理解几个关键概念:KVM(Kernel-basedVirtualMachine)基于Linux内核的完全虚拟化解决方案通过/dev/kvm接口直接使用硬件虚拟化扩展典型工具栈:libvirt+QEM
- 【软件系统架构】系列四:嵌入式软件-M2M 与 NPU 技术对比及协同设计方案
目录一、基本定义二、技术目标差异三、架构组成对比四、功能能力对比五、应用场景对比六、综合对比总结表七、协同场景建议八、M2M+NPU协同系统设计方案1.系统架构图(简化逻辑)2.模块划分与功能说明三、通信时序图(关键路径)四、数据协议定义(JSON)上报事件(推理结果)云端控制命令五、协同机制设计建议六、典型应用示例(如:AI门锁、边缘安防)一、基本定义项目M2M(MachinetoMachine
- 找组织——机器学习社区、团体洞察
小哥伯涵
机器学习人工智能
在Github上,有一些中文社区可以看一看:prompt“如果我是个AI小白,想参加到一个组织,接收最新的AI有趣源项目、一些定期的刊物等。我应该加入哪些组织?”AI社区——深度学习社区Reddit上的MachineLearningsubreddit:https://www.reddit.com/r/MachineLearning/是一个拥有超过400,000名成员的活跃社区。在这里,您可以找到有
- 从零开始理解零样本学习:AI人工智能必学技术
AI学长带你学AI
学习人工智能ai
从零开始理解零样本学习:AI人工智能必学技术关键词:零样本学习、跨模态映射、语义空间、AI泛化能力、大模型、少样本学习、数据效率摘要:传统AI需要“见多识广”才能识别新事物,但现实中很多场景(如稀有物种、冷门物品)缺乏足够数据。零样本学习(Zero-ShotLearning,ZSL)就像AI的“推理翻译官”,能让机器通过“文字描述”理解“没见过的图片”。本文将用“认新单词”的生活故事,一步步拆解零
- 深度学习学习指南
努力的Lorre
深度学习人工智能
本帖子将以本书的逻辑和顺序做一个梳理:CS基础->AI算法->模型压缩->异构计算->AI框架->AI编译器《DeepLearningSystems》(https://deeplearningsystems.ai/)CS基础推荐书单所需的编程语言(C/C++、Python)就不多讲了,数据结构算法也是大学基础课程,不多赘述。对于操作系统需要多了解,推荐多看一看《深入理解计算机系统》(传说中的面试圣
- cnn 一维时序数据_AI顶会解读|时序动作分割与检测,附代码链接
时序动作分割与检测时序动作的分割与检测是视频计算机视觉技术的一大常规任务,对自动驾驶和机器人等应用至关重要,下面3篇论文是腾讯AILab在这一方向的探索成果。1.动作识别中的时序帧间差异表征学习TemporalDistinctRepresentationLearningforActionRecognition本文由腾讯AILab、腾讯优图实验室、新加坡南洋理工大学、美国纽约州立大学布法罗分校合作完
- 一个轻量级、可移植、支持层级状态的 C 语言状态机框架,适用于嵌入式和Linux应用
橘色的喵
Linux嵌入式性能优化功能优化c语言linux驱动开发状态机HSMFSMstate_machine
一个轻量级、可移植、支持层级状态的C语言状态机框架,适用于嵌入式和Linux应用1.介绍一个轻量级、可移植、支持层级状态的C语言状态机框架,适用于嵌入式和Linux应用。本框架采用数据驱动方式,支持父子状态、入口/出口动作、守卫条件、外部/内部转换、未处理事件钩子等特性。本文修改后的版本:https://gitee.com/liudegui/state_machineRT-Thread社区维护的版
- 串口协议解析方案对比:缓冲区滑窗与分层状态机
橘色的喵
性能优化功能优化嵌入式嵌入式硬件HSMFSM状态机分层串口
串口协议解析方案对比:缓冲区滑窗与分层状态机0.引言本文对比两种常见的串口协议解析实现方式:基于滑动缓冲区(RingBuffer)的扫描法与**基于分层状态机(HierarchicalStateMachine,HSM,推荐QP-nano框架)**的事件驱动法。内容涵盖协议格式、核心流程、结构细节、优缺点分析及适用场景。协议格式示例协议:0xAA(头)|LEN(1B)|CMD(1B)|DATA[LE
- 强化学习实战:从 Q-Learning 到 PPO 全流程
荣华富贵8
程序员的知识储备2程序员的知识储备3人工智能算法机器学习
1引言随着人工智能的快速发展,强化学习(ReinforcementLearning,RL)凭借其在复杂决策与控制问题上的卓越表现,已成为研究与应用的前沿热点。本文旨在从经典的Q-Learning算法入手,系统梳理从值迭代到策略优化的全流程技术细节,直至最具代表性的ProximalPolicyOptimization(PPO)算法,结合理论推导、代码实现与案例分析,深入探讨强化学习的核心原理、算法演
- 《Learning to See in the Dark》论文超详细解读(翻译+精读)
小西柚code
论文阅读深度学习计算机视觉人工智能
前言最近读到《LearningtoSeeintheDark》这篇论文,觉得很有意思,所以在这里记录一下。目录前言ABSTRACT—摘要翻译精读一、INTRODUCTION—简介翻译精读二、RELATEDWORKS—相关工作2.1Imagedenoising—图像降噪翻译精读2.2Low-lightimageenhancement—低光图像增强翻译精读2.3Noisyimagedatasets—带噪
- 开源项目教程:Learning to See in the Dark
包椒浩Leith
开源项目教程:LearningtoSeeintheDarkpytorch-Learning-to-See-in-the-Dark项目地址:https://gitcode.com/gh_mirrors/pyt/pytorch-Learning-to-See-in-the-Dark项目介绍pytorch-Learning-to-See-in-the-Dark是一个使用PyTorch框架实现的项目,旨在
- 深入解析Golang GMP
tatasix
gogolang后端
文章目录1.引言2.GMP模型概述与核心结构体2.1.G(Goroutine)2.2.M(Machine/Thread)2.3.P(Processor)2.4.全局调度器schedt(Scheduler)3.Goroutine的生命周期与状态管理3.1Goroutine的核心状态列表3.2各个状态的详细解析3.3Goroutine状态的转换过程3.4Goroutine状态图4.G、M、P的协作关系
- Java虚拟机(JVM)原理:深入理解Java程序的运行机制!
杨凯凡
java
大家好!今天我们来聊聊Java虚拟机(JVM)的原理。JVM是Java程序运行的核心,它负责将Java字节码翻译成机器指令,并管理程序的内存、垃圾回收等。理解JVM的工作原理,不仅能帮助我们写出更高效的代码,还能更好地排查性能问题和内存泄漏。准备好了吗?让我们开始吧!一、JVM简介JVM(JavaVirtualMachine)是Java程序的运行环境。它的主要功能包括:加载字节码:将.class文
- Pyeeg模块部分功能介绍
脑电情绪识别
脑电情绪识别python神经网络深度学习pycharm
1.pyeeg简单介绍PyEEG是一个Python模块(即函数库),用于提取EEG(脑电)特征。正在添加更多功能。它包含构建用于特征提取的数据的函数,例如从给定的时间序列构建嵌入序列。它还能够将功能导出为svmlight格式,以便调用机器学习及深度学习工具。2.部分函数介绍1.pyeeg.ap_entropy(X,M,R)pyeeg.ap_entropy(X, M, R)计算时间序列X的近似熵(A
- 强化学习(Reinforcement Learning, RL)概览
MzKyle
人工智能人工智能强化学习机器学习机器人
一、强化学习的核心概念与定位1.定义强化学习是机器学习的分支,研究智能体(Agent)在动态环境中通过与环境交互,以最大化累积奖励为目标的学习机制。与监督学习(有标注数据)和无监督学习(无目标)不同,强化学习通过“试错”学习,不依赖先验知识,适合解决动态决策问题。2.核心要素智能体(Agent):执行决策的主体,如游戏AI、机器人。环境(Environment):智能体之外的一切,如棋盘、物理世界
- A Survey on Deep Learning Techniques Applied to medical image analysis
AI天才研究院
AI人工智能与大数据自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.BackgroundandKeyConceptsIntroductionKeyTerms&Concepts3.CoreTechnicalConceptsandOperationsConvolutionalNeuralNetwork(CNN)StructureofaCNNLayerBuildingBlocksofCNNConvolutionalLaye
- C++工厂模式的作用(工厂方法、Factory Method、Factory Pattern)
Dontla
C/C++c++工厂方法模式
文章目录代码示例工厂的作用1.对象创建的封装2.解耦客户端和具体类3.统一的创建入口4.隐藏实现细节在这个项目中的具体体现总结代码示例https://gitee.com/arnold_s/my-learning-test/tree/master/20250610_C++_design_pattern/23_GoF_Design_Patterns/02_Strategy工厂的作用1.对象创建的封装T
- 基于分布式部分可观测马尔可夫决策过程与联邦强化学习的低空经济智能协同决策框架
pk_xz123456
算法无人机分布式算法matlab人工智能制造开发语言
基于分布式部分可观测马尔可夫决策过程与联邦强化学习的低空经济智能协同决策框架摘要:低空经济作为新兴战略产业,其核心场景(如无人机物流、城市空中交通、低空监测)普遍面临环境动态性强、个体观测受限、数据隐私敏感及多智能体协同复杂等挑战。本文创新性地提出一种深度融合分布式部分可观测马尔可夫决策过程(Dec-POMDP)与联邦强化学习(FederatedReinforcementLearning,FRL)
- 熵增定律与人际关系-整理
吾883721
模型及认知学习
01.什么是熵增定律?熵增定律的定义十分简单:在一个孤立系统里,如果没有外力做功,其总混乱度(即熵)会不断增大。这项定义里有三个关键词:孤立系统、无外力做功、总混乱度(熵)。熵增定律被称为最让人沮丧的定律,它不仅预示了宇宙终将归于热寂,生命终将消失,而从小的方面来说,它也揭示了我们许多人性的弱点:安于现状,害怕变化,难以坚持,难以自律,不爱思考,说话做事逻辑混乱,缺乏原则......02.整个生命
- Cross-stitch Networks for Multi-task Learning 项目教程
童香莺Wyman
Cross-stitchNetworksforMulti-taskLearning项目教程Cross-stitch-Networks-for-Multi-task-LearningATensorflowimplementationofthepaperarXiv:1604.03539项目地址:https://gitcode.com/gh_mirrors/cr/Cross-stitch-Network
- 探索多任务学习的新维度:Cross-stitch Networks
计蕴斯Lowell
探索多任务学习的新维度:Cross-stitchNetworksCross-stitch-Networks-for-Multi-task-LearningATensorflowimplementationofthepaperarXiv:1604.03539项目地址:https://gitcode.com/gh_mirrors/cr/Cross-stitch-Networks-for-Multi-t
- LightGBM 与 XGBoost 深度解析:从基础原理到实战优化
爱看烟花的码农
ML集成学习机器学习人工智能
LightGBM与XGBoost深度解析:从基础原理到实战优化引言梯度提升机(GradientBoostingMachine,GBM)及其衍生算法,如XGBoost和LightGBM,是当今机器学习领域中应用最为广泛且效果卓越的监督学习模型之一。然而,许多学习者在初次接触这些算法时,往往对其复杂的内部机制感到困惑,难以形成深刻理解,常常止步于对算法流程的死记硬背。本教程旨在深入浅出地剖析GBDT(
- 【可持续学习网络模型0】目前全球增量学习或持续学习研究现状
帮带做
人工智能学习python硕博论文创新持续学习增量学习神经网络
全球增量学习或持续学习研究现状一、全球研究现状综述(2025年主流)✅1.研究目标和挑战✅2.主流研究范式(按解决灾难性遗忘的策略分类)二、重点代表性方法简介(含通俗解释)1.**EWC(ElasticWeightConsolidation)**:2.**iCaRL(IncrementalClassifierandRepresentationLearning)**:3.**HAT(HardAtte
- Error: Could not create the Java Virtual Machine. Error: A fatal exception has exit
嘉沐_Ran
java开发语言
错误常见场景开发与运行环境版本不匹配:代码在高版本JDK(如Java11、17)中编译/开发,配置了--add-opens参数。实际运行时用了低版本JDK(如Java8),JVM无法解析该参数,直接报错退出。配置文件/脚本残留高版本参数:IDE(如Eclipse、IDEA)的运行配置、Tomcat等容器的启动脚本里,保留了--add-opens这类高版本专属参数,但运行环境没升级,也会触发错误。简
- Java全栈AI平台实战:从模型训练到部署的革命性突破——Spring AI+Deeplearning4j+TensorFlow Java API深度解析
墨夶
Java学习资料3java人工智能spring
一、背景与需求:为什么需要Java驱动的AI平台?某医疗影像公司面临以下挑战:多语言开发混乱:Python训练模型,C++部署推理,Java调用服务,导致维护成本高昂部署效率低下:PyTorch模型需手动转换ONNX格式,TensorRT优化耗时2小时/模型实时性不足:视频流分析延迟达3秒,无法满足急诊场景需求通过Java全栈AI平台,我们实现了:端到端开发:Java调用PyTorch训练模型,直
- 深入解析ID3算法:信息熵驱动的决策树构建基石
大千AI助手
人工智能Python#OTHER算法决策树机器学习人工智能DecisionTreeID3信息熵
本文来自「大千AI助手」技术实战系列,专注用真话讲技术,拒绝过度包装。ID3(IterativeDichotomiser3)是机器学习史上的里程碑算法,由RossQuinlan于1986年提出。它首次将信息论引入决策树构建,奠定了现代决策树的理论基础。本文将深入剖析其数学本质与实现细节。往期文章推荐:20.用Mermaid代码画ER图:AI时代的数据建模利器19.ER图:数据库设计的可视化语言-搞
- 状态模式详解
杰_happy
设计模式状态模式
概述结构设计类似责任链模式,但是在各个状态进行遍历的过程中,更注重的是条件的判断,只有符合条件的状态才能正常匹配进行处理。条件不成功的会立即切换到下一个状态。有限状态机状态机一般指的是有限状态机(FSM:finite-statemachine),又称为优先自动状态机(FSA:finite-stateautomaton)。状态(State)状态机的有限个状态,例如:门可以分为开启、关闭两种状态。转换
- 工业视觉应用开发教程(一)
univerbright
工业视觉应用开发教程python人工智能工业视觉
一、工业视觉概述1.工业视觉的定义与应用场景:质量检测、目标定位、尺寸测量等工业视觉(MachineVision)是指通过计算机视觉技术和图像处理技术,模拟人类视觉来获取、分析、处理工业生产过程中的图像或视频数据,进而做出决策或控制动作的技术。工业视觉广泛应用于自动化生产线、质量检测、设备监控等领域,能够提高生产效率、确保产品质量、减少人工成本。应用场景:质量检测:工业视觉在质量检测中发挥着至关重
- 物联网开发笔记(9)- 使用Wokwi仿真MicroPython on ESP32开发板实现温度和湿度检测并使用屏幕显示_wokwi仿真平台
字节全栈_LSj
物联网笔记
‘’’frommachineimportPin,PWM,I2C,Timer,UARTimporttime,machine,ssd1306,dhtuart1=UART(1,115200)#调用串口uart1uart1.init(115200,bits=8,parity=None,stop=1)#初始化串口相关参数Tim_S=Timer(0)#定时器对象,很怪,有了这个定时器,下面的蜂鸣器没有了短促的
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><