最短距离 dijkstra floyd 算法

//
//  main.cpp
//  testcpp
//
//  Created by 222 on 16/9/16.
//  Copyright © 2016年 222. All rights reserved.
//

#include 
#include 

using namespace std;

const int maxnum = 100;//顶点个数
const int maxint = 999999;//表示不可达

void Dijkstra(int n, int v_beg, int *dist, int *prev, int c[maxnum][maxnum]){
    
    //初始化
    bool used[maxint];
    for(int i = 1; i <= n; ++i){
        used[i] = false;
        dist[i] = c[v_beg][i];
        if (maxint == dist[i]) {
            prev[i] = -1;
        }else{
            prev[i] = v_beg;
        }
    }
    prev[v_beg] = -1;//将源点置-1,方便搜索路径时作为结束标志
    used[v_beg] = true;
    
    // 依次将未放入used集合的结点中:取dist[]最小值的结点,放入结合S中
    // 循环完成后used包含了所有V中顶点,dist记录了从源点到所有其他顶点之间的最短路径长度
    // prev[]记录了每个点的前驱,根据这个找到路径的逆序
    for(int cnt = 2; cnt <= n; ++cnt){
        int curMin = maxint;
        int idx = -1;
        for (int i = 1; i <= n; ++i) {//寻找不在used中且距离最小的一个
            if (!used[i] && (dist[i] < curMin)) {
                curMin = dist[i];
                idx = i;
            }
        }
        used[idx] = true;//找到不在used中且距离最小的一个,加入used[]
        //更新dist[]和prev[]
        for (int i = 0; i <= n; ++i) {
            if (!used[i]) {
                int tmp_dist = dist[idx] + c[idx][i];
                if ( tmp_dist < dist[i]) {
                    dist[i] = tmp_dist;
                    prev[i] = idx;
                }
            }
        }
    }
}

//找到源点到e点的路径
void searchPath(int *prev, int v_beg, int e){
    stack stk;
    int idx = e;
    stk.push(idx);
    while (-1 != prev[idx]) {
        stk.push(prev[idx]);
        idx = prev[idx];
    }
    while (!stk.empty()) {
        int v = stk.top();
        if (v != e) {
            cout << stk.top() << "->";
        }else{
            cout << stk.top() << endl;
        }
        stk.pop();
    }
}

int main(int argc, const char * argv[]) {
    int n,line;//顶点数,边数
    int c[maxnum][maxnum];
    int prev[n+1];

    int dist[n+1];
    cout << "输入顶点数、边数:" << endl;
    cin >> n >> line;
    //先全部初始化为最大距离
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) {
            c[i][j] = maxint;
        }
    }
    cout << "依次输入两顶点和两点距离:" << endl;
    int p, q, dst;//两顶点
    for (int i = 1; i <= line; ++i) {
        cin >> p >> q >> dst;
        c[p][q] = dst;
        c[q][p] = dst;//无向图
    }
    Dijkstra(n, 1, dist, prev, c);
    //找到源点到最后一个点的距离
    searchPath(prev, 1, n);
    cout << "min dist: " << dist[n] << endl;
    
    return 0;
}


//
//  main.cpp
//  testcpp
//
//  Created by 222 on 16/9/16.
//  Copyright © 2016年 222. All rights reserved.
//
 
  
 
  
 
  
#include 
#include 

using namespace std;

const int maxnum = 100;//顶点个数
const int maxint = 999999;//表示不可达
//-----------------------------------------
//Floyd
//-----------------------------------------
void Floyd(int n, int c[maxnum][maxnum], int path[maxnum][maxnum]){
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) {
            path[i][j] = -1;
        }
    }
    for (int k = 1; k <= n; ++k) {
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (c[i][j] > c[i][k] + c[k][j]) {
                    c[i][j] = c[i][k] + c[k][j];
                    path[i][j] = k;
                }
            }
        }
    }
}
void searchPath_Floyd (int path[maxnum][maxnum], int n, int m) {
    stack stk;
    int idx = m;
    stk.push(idx);
    while (-1 != path[n][idx]) {
        stk.push(path[n][idx]);
        idx = path[n][idx];
    }
    stk.push(n);
    while (!stk.empty()) {
        int v = stk.top();
        if (v != m) {
            cout << stk.top() << "->";
        }else {
            cout << stk.top() << endl;
        }
        stk.pop();
    }
}
int main(int argc, const char * argv[]) {
    //Floyd
    int n,line;//顶点数,边数
    int c[maxnum][maxnum];
    int path[maxnum][maxnum];
    cout << "输入顶点数、边数:" << endl;
    cin >> n >> line;
    //先全部初始化为最大距离
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) {
            c[i][j] = maxint;
        }
        c[i][i] = 0;
    }
    cout << "依次输入两顶点和两点距离:" << endl;
    int p, q, dst;//两顶点
    for (int i = 1; i <= line; ++i) {
        cin >> p >> q >> dst;
        c[p][q] = dst;
        //c[q][p] = dst;//无向图
    }
    Floyd(n, c, path);
    cout << "所有i-j最短距离矩阵:" << endl;
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) {
            printf("%6d", c[i][j]);
        }
        cout << endl;
    }
    cout << "路径:" << endl;
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) {
            printf("%6d", path[i][j]);
        }
        cout << endl;
    }
    cout << "例如:1-4 路径: ";
    searchPath_Floyd(path, 1, 4);
    
    return 0;
}

 
  
 
  
 
 

你可能感兴趣的:(最短距离 dijkstra floyd 算法)