NLTK文本分类入门——判别谣言

前言

今天分享一个nlp任务的实例:给定一句话,要求判别是否为谣言。这里只使用NLTK等工具(简单实用),不涉及deep learning的相关内容,所以是初学者友好型实例。本文包括了数据预处理、模型搭建以及预测评估三个方面,使用的算法主要为Naive Bayes和Logistic Regression,算法本身的理论知识这里就不展开了(网上非常多),不了解的小朋友先做一个preview再回来吧。另外,这个实例是完全可以在本地完成的,不需要用到gpu等资源,运行速度也是比较快的,放心食用就好,下面我们就一步步通过代码来完成它。

预处理

  1. 下载数据到本地
import requests
import os
from pathlib import Path

fname = 'rumour-data.tgz'
data_dir = os.path.splitext(fname)[0] #'rumour-data'

my_file = Path(fname)
if not my_file.is_file():
    url = "https://github.com/jhlau/jhlau.github.io/blob/master/files/rumour-data.tgz?raw=true"
    r = requests.get(url)

    #Save to the current directory
    with open(fname, 'wb') as f:
        f.write(r.content)
        
print("Done. File downloaded:", my_file)
  1. 解压缩文件
import tarfile

#decompress rumour-data.tgz
tar = tarfile.open(fname, "r:gz")
tar.extractall()
tar.close()

#remove superfluous files (e.g. .DS_store)
extra_files = []
for r, d, f in os.walk(data_dir):
    for file in f:
        if (file.startswith(".")):
            extra_files.append(os.path.join(r, file))
for f in extra_files:
    os.remove(f)

print("Extraction done.")

然后你可以在本地看到数据文件了,文件的结构大致是这样

rumour-data
    - rumours
        - 498254340310966273
            - reactions
                - 498254340310966273.json
                - 498260814487642112.json
            - source-tweet
                - 498254340310966273.json
    - non-rumours
  1. 试用json包来解析数据
def get_tweet_text_from_json(file_path):
    with open(file_path) as json_file:
        data = json.load(json_file)
        return data["text"]
    
def get_events(event_dir):
    event_list = []
    for event in sorted(os.listdir(event_dir)):

        tweet_list = []
        event_path = os.path.join(event_dir,event)
        for root,dirs,files in os.walk(event_path):
            for f in files:
                file_path = os.path.join(root,f)
                tweet = get_tweet_text_from_json(file_path)
                tweet_list.append(tweet) 
        event_list.append(tweet_list)
        
    return event_list
    
#a list of events, and each event is a list of tweets (source tweet + reactions)    
rumour_events = get_events(os.path.join(data_dir, "rumours"))
nonrumour_events = get_events(os.path.join(data_dir, "non-rumours"))

print("Number of rumour events =", len(rumour_events))
print("Number of non-rumour events =", len(nonrumour_events))
  1. 建立bag of words(bow),并顺便剔除stopwords
import nltk
from nltk.tokenize import TweetTokenizer
from nltk.corpus import stopwords
from collections import defaultdict

tt = TweetTokenizer()
stopwords = set(stopwords.words('english'))

def preprocess_events(events):
  
    preprocessed_event_list = []
    for event in events:
        preprocessed_event = []
        word_freq = {}
        for tweet in event:
            word_tokens = tt.tokenize(tweet)
            for word in word_tokens:
                if word.lower() in stopwords:
                    continue
                if word not in word_freq:
                    word_freq[word] = 0
                word_freq[word] += 1
        preprocessed_event_list.append(word_freq)
    return preprocessed_event_list

preprocessed_rumour_events = preprocess_events(rumour_events)
preprocessed_nonrumour_events = preprocess_events(nonrumour_events)

print("Number of preprocessed rumour events =", len(preprocessed_rumour_events))
print("Number of preprocessed non-rumour events =", len(preprocessed_nonrumour_events))
  1. 找到所有hashtags
def get_all_hashtags(events):
    hashtags = set([])
    for event in events:
        for word, frequency in event.items():
            if word.startswith("#"):
                hashtags.add(word)
    return hashtags

hashtags = get_all_hashtags(preprocessed_rumour_events + preprocessed_nonrumour_events)
print("Number of hashtags =", len(hashtags))
  1. 利用reversed MaxMatch算法拆分hashtags
from nltk.corpus import wordnet

lemmatizer = nltk.stem.wordnet.WordNetLemmatizer()
words = set(nltk.corpus.words.words()) #a list of words provided by NLTK

def tokenize_hashtags(hashtags):

    def get_tag(tag):
        if tag.startswith('J'):
            return wordnet.ADJ
        elif tag.startswith('V'):
            return wordnet.VERB
        elif tag.startswith('N'):
            return wordnet.NOUN
        elif tag.startswith('R'):
            return wordnet.ADV
        else:
            return wordnet.NOUN
    res = {}
    for hashtag in hashtags:
        key = hashtag
        tokens = []
        while len(hashtag) > 0:
            for i in range(len(hashtag)):
                word = hashtag[i:]
                word_pos_tag = nltk.tag.pos_tag([word.lower()])[0][1]
                lemmatized_word = lemmatizer.lemmatize(word.lower(),get_tag(word_pos_tag))
                if lemmatized_word in words:
                    hashtag = hashtag[:i]
                    tokens.append(word)
                    break
            else:
                tokens.append(word)
                hashtag = hashtag[:i]
        res[key] = tokens[::-1]
    return res

tokenized_hashtags = tokenize_hashtags(hashtags)
print(list(tokenized_hashtags.items())[:20])
  1. 更新我们的bow
def update_event_bow(events):

    for event in events:
        for word in list(event.keys()):
            if word.startswith('#') and word in tokenized_hashtags:
                subtokens = tokenized_hashtags[word]
                for token in subtokens:
                    if token in event:
                        event[token] += event[word]
                    else:
                        event[token] = 1
            
update_event_bow(preprocessed_rumour_events)
update_event_bow(preprocessed_nonrumour_events)

print("Number of preprocessed rumour events =", len(preprocessed_rumour_events))
print("Number of preprocessed non-rumour events =", len(preprocessed_nonrumour_events))

模型训练评估

  1. 构造训练集,评估集,测试集
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split

vectorizer = DictVectorizer()

rumour_size = len(preprocessed_rumour_events)
nonrumour_size = len(preprocessed_nonrumour_events)
all_events = preprocessed_rumour_events + preprocessed_nonrumour_events
all_labels = [1] * rumour_size + [0] * nonrumour_size
train_data, dev_test_data, train_label, dev_test_label \
    = train_test_split(all_events,all_labels,stratify = all_labels,test_size=0.4,random_state=12345)
dev_data, test_data, dev_label, test_label \
    = train_test_split(dev_test_data,dev_test_label,stratify = dev_test_label,test_size=0.5,random_state=12345)
train_set = vectorizer.fit_transform(train_data)
dev_set = vectorizer.transform(dev_data)
test_set = vectorizer.transform(test_data)

#print(len(train_data),len(dev_data),len(test_data))
#print(len(train_label),len(dev_label),len(test_label))

print("Vocabulary size =", len(vectorizer.vocabulary_))

  1. 分别用naive bayes和logistic regression进行训练,并利用dev集手动调参
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score,f1_score

# apply Naive Bayes
print("For Naive Bayes model:")
alpha = 0.78
NB_classifier = MultinomialNB(alpha=alpha)
NB_classifier.fit(train_set,train_label)
dev_NB_pred = NB_classifier.predict(dev_set)
acc_NB_dev = accuracy_score(dev_label,dev_NB_pred)
print("When choosing alpha(additive smoothing parameter) =", alpha, ", the accuracy =", acc_NB_dev)

# apply Logistic Regression
print("\nFor Logistic Regression model:")
C = 0.07
solver='liblinear'
LR_classifier = LogisticRegression(C=C,solver=solver)
LR_classifier.fit(train_set,train_label)
dev_LR_pred = LR_classifier.predict(dev_set)
acc_LR_dev = accuracy_score(dev_label,dev_LR_pred)
print("When choosing",solver, "as solver and C(inverse of regularization strength) =", C, ", the accuracy =", acc_LR_dev)
  1. 评估模型(acc & macro-averaged F-score)
# for Naive Bayes
print("For Naive Bayes model:")
test_NB_pred = NB_classifier.predict(test_set)
acc_NB_test = accuracy_score(test_label,test_NB_pred)
f1_NB_test = f1_score(test_label,test_NB_pred,average='macro')
print("the accuracy =",acc_NB_test)
print("the macro-averaged F-score =",f1_NB_test)

# for Logistic Regression
print("\nFor Logistic Regression model:")
test_LR_pred = LR_classifier.predict(test_set)
acc_LR_test = accuracy_score(test_label,test_LR_pred)
f1_LR_test = f1_score(test_label,test_LR_pred,average='macro')
print("the accuracy =",acc_LR_test)
print("the macro-averaged F-score =",f1_LR_test)

最后从结果看,两种方法对这种简单文本的分类还是有不错的效果的。

For Naive Bayes model:
the accuracy = 0.8
the macro-averaged F-score = 0.7738579828132066

For Logistic Regression model:
the accuracy = 0.7866666666666666
the macro-averaged F-score = 0.7491638795986622

你可能感兴趣的:(NLTK文本分类入门——判别谣言)