94、Spark Streaming之与Spark SQL结合使用之top3热门商品实时统计案例实战

与Spark SQL结合使用

Spark Streaming最强大的地方在于,可以与Spark Core、Spark SQL整合使用,之前已经通过transform、foreachRDD等算子看到,如何将DStream中的RDD使用Spark Core执行批处理操作。现在就来看看,如何将DStream中的RDD与Spark SQL结合起来使用。
案例:每隔10秒,统计最近60秒的,每个种类的每个商品的点击次数,然后统计出每个种类top3热门的商品。
Java版本

public class Top3HotProduct {
    public static void main(String[] args) {
        System.setProperty("HADOOP_USER_NAME", "hadoop");
        SparkConf conf = new SparkConf().setAppName("Top3HotProductJava").setMaster("local[2]");
        JavaStreamingContext streamingContext = new JavaStreamingContext(conf, Durations.seconds(10));

        streamingContext.checkpoint("hdfs://hadoop-100:9000/streamingCheckpoint");

        JavaReceiverInputDStream productVisitDstream = streamingContext.socketTextStream("hadoop-100", 10000);

        JavaPairDStream productVisitNumsDstream = productVisitDstream.mapToPair(new PairFunction() {
            @Override
            public Tuple2 call(String s) throws Exception {
                String[] strings = s.split(" ");
                return new Tuple2<>(strings[1] + "_" + strings[2], 1);
            }
        });

        JavaPairDStream tempResultDstream = productVisitNumsDstream.reduceByKeyAndWindow(new Function2() {
            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }
        }, Durations.seconds(60), Durations.seconds(10));


        tempResultDstream.foreachRDD(new Function, Void>() {
            @Override
            public Void call(JavaPairRDD productVisitRDD) throws Exception {
                JavaRDD productVisitRowRDD = productVisitRDD.map(new Function, Row>() {
                    @Override
                    public Row call(Tuple2 v1) throws Exception {
                        return RowFactory.create(v1._1.split("_")[0], v1._1.split("_")[1], v1._2);
                    }
                });

                List fieldList = new ArrayList();
                fieldList.add(DataTypes.createStructField("category", DataTypes.StringType, true));
                fieldList.add(DataTypes.createStructField("product", DataTypes.StringType, true));
                fieldList.add(DataTypes.createStructField("visit", DataTypes.IntegerType, true));
                StructType structType = DataTypes.createStructType(fieldList);

                HiveContext hiveContext = new HiveContext(productVisitRDD.context());

                DataFrame productVisitDF = hiveContext.createDataFrame(productVisitRowRDD, structType);
               
                productVisitDF.show();
                productVisitDF.registerTempTable("product_visit");
                DataFrame top3DF = hiveContext.sql("select category, product, visit " +
                        "from ( " +
                        "select category, product, visit, " +
                        "row_number() over(partition by category order by visit desc) rank " +
                        "from product_visit " +
                        ") tmp " +
                        "where rank < 4");
                top3DF.show();
                return null;
            }
        });

        streamingContext.start();
        streamingContext.awaitTermination();
        streamingContext.close();
    }
}

Scala版本


你可能感兴趣的:(94、Spark Streaming之与Spark SQL结合使用之top3热门商品实时统计案例实战)