【PTA】6-12 二叉搜索树的操作集 (30分)

【PTA】6-3 求链式表的表长 (10分)

函数接口定义:

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};
  • 函数InsertX插入二叉搜索树BST并返回结果树的根结点指针;
  • 函数DeleteX从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
  • 函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
  • 函数FindMin返回二叉搜索树BST中最小元结点的指针;
  • 函数FindMax返回二叉搜索树BST中最大元结点的指针。

裁判测试程序样例:

 1 #include 
 2 #include 
 3 
 4 typedef int ElementType;
 5 typedef struct TNode *Position;
 6 typedef Position BinTree;
 7 struct TNode{
 8     ElementType Data;
 9     BinTree Left;
10     BinTree Right;
11 };
12 
13 void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
14 void InorderTraversal( BinTree BT );  /* 中序遍历,由裁判实现,细节不表 */
15 
16 BinTree Insert( BinTree BST, ElementType X );
17 BinTree Delete( BinTree BST, ElementType X );
18 Position Find( BinTree BST, ElementType X );
19 Position FindMin( BinTree BST );
20 Position FindMax( BinTree BST );
21 
22 int main()
23 {
24     BinTree BST, MinP, MaxP, Tmp;
25     ElementType X;
26     int N, i;
27 
28     BST = NULL;
29     scanf("%d", &N);
30     for ( i=0; i ) {
31         scanf("%d", &X);
32         BST = Insert(BST, X);
33     }
34     printf("Preorder:"); PreorderTraversal(BST); printf("\n");
35     MinP = FindMin(BST);
36     MaxP = FindMax(BST);
37     scanf("%d", &N);
38     for( i=0; i ) {
39         scanf("%d", &X);
40         Tmp = Find(BST, X);
41         if (Tmp == NULL) printf("%d is not found\n", X);
42         else {
43             printf("%d is found\n", Tmp->Data);
44             if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
45             if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
46         }
47     }
48     scanf("%d", &N);
49     for( i=0; i ) {
50         scanf("%d", &X);
51         BST = Delete(BST, X);
52     }
53     printf("Inorder:"); InorderTraversal(BST); printf("\n");
54 
55     return 0;
56 }
57 /* 你的代码将被嵌在这里 */

输入样例:

10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3

输出样例:

Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9

函数实现细节:

  1 BinTree Insert( BinTree BST, ElementType X ){
  2     if(BST==NULL){
  3         BinTree temp=(BinTree)malloc(sizeof(struct TNode));
  4         temp->Data=X,temp->Left=temp->Right=NULL;
  5         return temp;
  6     }else{
  7         BinTree BT=BST,Pre;
  8         BinTree temp=(BinTree)malloc(sizeof(struct TNode));
  9         temp->Data=X,temp->Left=temp->Right=NULL;
 10         while(BT){
 11             if(X>BT->Data){
 12                 Pre=BT;
 13                 BT=BT->Right;
 14             }else{
 15                 Pre=BT;
 16                 BT=BT->Left;
 17             }
 18         }
 19         if(X>Pre->Data){
 20             Pre->Right=temp;
 21         }else{
 22             Pre->Left=temp;
 23         }
 24         return BST;
 25     }
 26     return NULL;
 27 }
 28  
 29 BinTree Delete( BinTree BST, ElementType X ){
 30     BinTree Pre=BST,LMax,RMin,BT=NULL,head=BST;
 31     if(head){
 32         while(head&&head->Data!=X){
 33             if(X>head->Data){
 34                 Pre=head;
 35                 head=head->Right;
 36             }else{
 37                 Pre=head;
 38                 head=head->Left;
 39             }
 40         }
 41         if(head&&head->Data==X)BT=head;
 42         if(BT){
 43             LMax=BT->Left;RMin=BT->Right;
 44             if(LMax){
 45                 Pre=BT;
 46                 while(LMax->Right){
 47                     Pre=LMax;
 48                     LMax=LMax->Right;
 49                 }
 50                 BT->Data=LMax->Data;
 51                 if(LMax->Left==NULL){
 52                     if(Pre->Left==LMax){
 53                         Pre->Left=NULL;free(LMax);
 54                     }else{
 55                         Pre->Right=NULL;free(LMax);
 56                     }
 57                     return BST;
 58                 }else{
 59                     if(Pre->Left==LMax){
 60                         Pre->Left=LMax->Left;
 61                         free(LMax);
 62                     }else{
 63                         Pre->Right=LMax->Left;
 64                         free(LMax);
 65                     }
 66                     return BST;
 67                 }
 68             }
 69             else if(RMin){
 70                 Pre=BT;
 71                 while(RMin->Left){
 72                     Pre=RMin;
 73                     RMin=RMin->Left;
 74                 }
 75                 BT->Data=RMin->Data;
 76                 if(RMin->Right==NULL){
 77                     if(Pre->Left==LMax){
 78                         Pre->Left=NULL;free(LMax);
 79                     }else{
 80                         Pre->Right=NULL;free(LMax);
 81                     }
 82                     return BST;
 83                 }else{
 84                     if(Pre->Right==RMin){
 85                         Pre->Right=RMin->Right;
 86                         free(RMin);
 87                     }else{
 88                         Pre->Right=RMin->Left;
 89                         free(RMin);
 90                     }
 91                     return BST;
 92                 }
 93             }
 94             else{
 95                 if(Pre->Right==BT){
 96                     Pre->Right=NULL;free(BT);
 97                     return BST;
 98                 }else if(Pre->Left==BT){
 99                     Pre->Left=NULL;free(BT);
100                     return BST;
101                 }else if(Pre==BST){
102                     free(BST);
103                     return NULL;    
104                 }
105                 
106             }
107         }else{
108             printf("Not Found\n");
109             return BST;
110         }
111     }else{
112             printf("Not Found\n");
113             return BST;
114         }
115 }
116 
117 Position Find( BinTree BST, ElementType X ){
118     if(BST){
119         while(BST&&BST->Data!=X){
120             if(X>BST->Data){
121                 BST=BST->Right;
122             }else{
123                 BST=BST->Left;
124             }
125         }
126         if(BST&&BST->Data==X)return BST;
127         return NULL; 
128     }
129     return NULL;
130 }
131  
132 Position FindMin( BinTree BST ){
133     if(BST){
134         while(BST->Left){
135             BST=BST->Left;
136         }
137         return BST;
138     }
139     return NULL;
140 }
141 
142 Position FindMax( BinTree BST ){
143     if(BST){
144         while(BST->Right){
145             BST=BST->Right;
146         }
147         return BST;
148     }
149     return NULL;
150 }

你可能感兴趣的:(【PTA】6-12 二叉搜索树的操作集 (30分))