- 前端面试
请叫我子鱼
编程语言笔试面试程序员webinterview
前端面试之道JS基础知识点及常考面试题原始(Primitive)类型面试题:原始类型有哪几种?null是对象嘛?在JS中,存在着6种原始值,分别是:booleannullundefinednumberstringsymbol首先原始类型存储的都是值,是没有函数可以调用的对象(Object)类型面试题:对象类型和原始类型的不同之处?函数参数是对象会发生什么问题?在JS中,除了原始类型那么其他的都是对
- [项目]基于FreeRTOS的STM32四轴飞行器: 十.检测遥控器
嵌入式T90S
stm32嵌入式硬件单片机
基于FreeRTOS的STM32四轴飞行器:十.检测遥控器一.检测遥控器连接逻辑二.遥控器的解锁情况三.遥控器控制飞机运转一.检测遥控器连接逻辑判断是否进入定高模式:根据返回值判断遥控器的连接情况:实现检测函数:因为该函数在通信任务中调度6ms一次,可以使用cnt进行计时,判断是否失联:开头初始化cnt为200可以防止一启动没有连接显示连接成功的问题。/***@description:用来检测遥控
- 新能源汽车驱动电机构造与原理,关键技术大不同
物联高科
汽车单片机运维嵌入式硬件创业创新人工智能
随着全球能源危机和环境问题的日益严峻,新能源汽车(NEV)正以惊人的速度发展。在新能源汽车的核心部件中,驱动电机扮演着至关重要的角色,它直接决定了车辆的性能、效率和可靠性。一、驱动电机的构造:精巧设计与高效集成与传统内燃机复杂的机械结构相比,驱动电机在构造上显得更为简洁。然而,这种简洁背后蕴含着精密的电气设计和高效的能量转换机制。一般来说,驱动电机主要由以下几个关键部件组成:定子(Stator):
- 免费提供多样风格手机壁纸及自动更换功能的软件
开开心心就好
智能手机tcp/ipmacos网络协议androidpdfpython
在寻找手机壁纸时,要是能有一款软件,既免费又资源丰富,操作还简单方便,那可就太棒了。今天就给大家介绍这样一款软件——壁纸喵,它能满足你对手机壁纸的各种需求。壁纸喵是一款完全免费的手机壁纸软件,其壁纸资源极其丰富。不管你喜欢哪种风格和主题,无论是竖屏、横屏,还是追求高清品质的4K壁纸,在这里都能找到。各种风格应有尽有,从简约清新到华丽炫酷,从可爱萌系到酷炫科技,丰富的选择让你总能找到心仪的那一款。便
- C语言 - getchar() 和 getch() 的区别
Peter_Deng.
c语言算法
getchar()和getch()都是用于读取单个字符的函数,但它们有一些关键区别,主要涉及缓冲区、回显和移植性。1.getchar()特点头文件:#include从标准输入(stdin)读取一个字符,需要按下Enter才能生效。带缓冲(Buffered):用户输入的内容会先存入缓冲区,只有按下Enter之后,getchar()才会从缓冲区读取数据。回显(Echo):输入的字符会显示在屏幕上。代码
- chokidar - chokidar 初识(初识案例演示、初识案例解读、初识案例测试)
我命由我12345
Node.js简化库编程node.jsjsjavascript前端框架前端npmhtml5
一、chokidar1、chokidar概述chokidar是一个用于监视文件系统变化的Node.js库chokidar提供了一种简单、高效的方式来监视文件和目录的创建、修改、删除等操作chokidar是是fs.watch和fs.watchFile方法的增强版,解决了它们在一些平台上的不一致性和局限性2、chokidar的特点跨平台的支持:chokidar在Windows、Linux、macOS上
- MiniMind:完全从 0 训练自己的大模型
三花AI
三花AI人工智能LLM大模型
是B站UP主近在远方的远开源的一个微型语言模型,改进自DeepSeek-V2、Llama3结构,项目包含整个数据处理、pretrain、sft、dpo的全部阶段,包含混合专家(MoE)模型。其目标是把上手LLM的门槛无限降低,直接从0开始训练一个极其轻量的语言模型,最低仅需2G显卡即可推理训练!
- 探索Python中的集成方法:Stacking
Echo_Wish
Python笔记Python算法python开发语言
在机器学习领域,Stacking是一种高级的集成学习方法,它通过将多个基本模型的预测结果作为新的特征输入到一个元模型中,从而提高整体模型的性能和鲁棒性。本文将深入介绍Stacking的原理、实现方式以及如何在Python中应用。什么是Stacking?Stacking,又称为堆叠泛化(StackedGeneralization),是一种模型集成方法,与Bagging和Boosting不同,它并不直
- Vue前端实现多个条件表格搜索
1724580787
前端vue.jsjavascript
文章目录操作实现效果测试json数据搜索栏条件过滤完成搜索表格栏完整代码操作实现效果在vue文件中通过js代码完成多条件搜索符合条件的table数据,本文使用了element-ui组件创建表格。效果如下图所示:测试json数据[{"test1":"","test2":"","test3":"","test4":""}...//这里只展示一条数据]搜索栏条件过滤完成搜索computed计算方法监视t
- 【Python】 Stacking: 强大的集成学习方法
音乐学家方大刚
Pythonpython集成学习开发语言
我们都找到天使了说好了心事不能偷藏着什么都一起做幸福得没话说把坏脾气变成了好沟通我们都找到天使了约好了负责对方的快乐阳光下的山坡你素描的以后怎么抄袭我脑袋想的薛凯琪《找到天使了》在机器学习中,单一模型的性能可能会受到其局限性和数据的影响。为了解决这个问题,我们可以使用集成学习(EnsembleLearning)方法。集成学习通过结合多个基模型的预测结果,来提高整体模型的准确性和稳健性。Stacki
- MiniMind:3小时完全从0训练一个仅有26M的小参数GPT,最低仅需2G显卡即可推理训练!
哈罗·沃德
LLMgpt
MiniMind:3小时完全从0训练一个仅有26M的小参数GPT,最低仅需2G显卡即可推理训练!概述MiniMind是一个开源的微型语言模型,它的设计目标是让个人GPU用户也能够快速推理甚至训练语言模型。它的体积仅为26M,大约是GPT3的1/7000,非常适合快速部署和实验。https://github.com/user-attachments/assets/88b98128-636e-43bc
- llama源码学习·model.py[3]ROPE旋转位置编码(2)旋转角度生成代码
小杜不吃糖
llama
一、源码注释defprecompute_freqs_cis(dim:int,end:int,theta:float=1000.0):'''预先计算频率和复数的cosine和sine值,用于后续的PositionalEncodingdim:维度end:一个序列的最大长度或位置的最大值theta:用于计算频率的超参数,默认值为1000.0'''#生成一个等比数列,即频率(frequencies),这种
- 跟着黑马学MySQL基础篇笔记(1)-概述与SQL
小杜不吃糖
mysql笔记sql
03.安装与启动启动netstartmysql80netstopmysql80客户端连接mysql[-h127.0.0.1][-P3306]-uroot-p04.mysql数据模型关系型数据库RDBMS05.通用语法及分类DDL:数据定义语言,用来定义数据库对象(数据库,表,字段)DML:数据操作语言,用来对数据库表中的数据进行增删改DQL:数据查询语言,用来查询数据库中表的记录DCL:数据控制语
- 如何编写一个Spring Boot Starter
一口酥Hac
javaspringboot后端javamaven
文章目录概要创建一个SpringBootStarter的步骤创建一个Maven项目打包并发布在其他项目中使用总结概要写一个SpringBootStarter其实就是封装一部分功能,方便其他项目引入和使用。Starter是SpringBoot提供的一种机制,目的是为了简化配置和模块化开发。一般来说,SpringBootStarter会封装一个特定的功能模块,并自动配置一些常用的组件。通过写一个Sta
- adb 如何导出手机的文件
风继续吹..
工具类Uni-Appadb智能手机uniappsqlite
目录1.开启USB调试2.连接设备3.启动ADB4.导出文件使用adbpull命令5.可视化工具预览adb(AndroidDebugBridge)是Android开发中常用的一个工具,它允许开发者通过电脑与Android设备进行通信。如果你想通过adb导出手机上的文件,你可以按照以下步骤业务需求:前端通过使用uni-app的sqlite(关系型数据库系统),存储了大量的机密数据在手机上,直接通过代
- PostgreSQL_数据使用与日数据分享
程序猿与金融与科技
数据库postgresql
目录前置:1使用1.1获取前复权因子1.2查询股票的纵向数据1.3查询股票的横向数据2日数据分享(截止至:2025-03-21)总结前置:本博文是一个系列。在本人“数据库专栏”-》“PostgreSQL_”开头的博文。本文为该系列最后一篇。1使用1.1获取前复权因子访问优矿官网ticker_list=[]field_list=['secID','tradeDate','accumAdjFactor
- (链表)19. 删除链表的倒数第 N 个结点
蹉跎x
力扣链表数据结构算法
给你一个链表,删除链表的倒数第n个结点,并且返回链表的头结点。示例1:输入:head=[1,2,3,4,5],n=2输出:[1,2,3,5]示例2:输入:head=[1],n=1输出:[]示例3:输入:head=[1,2],n=1输出:[1]提示:链表中结点的数目为sz1next=head;intcnt=-1;ListNode*cur=dummyhead;while(cur!=nullptr){c
- PostgreSQL_实例项目总述
程序猿与金融与科技
数据库postgresql
目录前置:实例项目总述:前置:1最近新入PostgreSQL,打算用PostgreSQL存储股票日数据,以此为实例记录整个PostgreSQL使用过程2所以这次的博文是一个序列,都放在数据库专栏里,以PostgreSQL_打头3PostgreSQL的安装在这个系列里就不赘述了,安装过程简单。(如果有人实在搞不懂怎么安装,可以留言)实例项目总述:项目描述:股票日数据仓库数据来源:优矿1数据表结构设计
- DPO 核心理论推导:参考策略距离约束下的最优策略 + 损失函数设计
iiiiii11
机器学习人工智能论文阅读笔记语言模型深度学习
Rafailov,Rafael,etal.“Directpreferenceoptimization:Yourlanguagemodelissecretlyarewardmodel.”AdvancesinNeuralInformationProcessingSystems36(2023):53728-53741.本文整理了DPO论文中两个核心结论的推导,包括参考策略距离约束下的最优策略的形式,以及
- 使用Seaborn库中的`violinplot`函数绘制水平小提琴图(Violin Plot)是一种常见的数据可视化方法
code_welike
信息可视化数据分析数据挖掘Python
使用Seaborn库中的violinplot函数绘制水平小提琴图(ViolinPlot)是一种常见的数据可视化方法。水平小提琴图可以展示数据的分布特征,并可以对比不同组别之间的差异。本文将介绍如何使用Python和Seaborn库绘制水平小提琴图,并提供相应的源代码示例。首先,我们需要确保已经安装了Seaborn库。可以使用以下命令在Python中安装Seaborn:pipinstallseabo
- llama-factory 微调 Qwen2.5-3B-Instruct
coco_1998_2
llamafactoryfinetune
0、资源链接官方readme:https://github.com/hiyouga/LLaMA-Factory/blob/v0.9.1/README_zh.md官方文档:https://llamafactory.readthedocs.io/zh-cn/latest/官方推荐的知乎教程:https://zhuanlan.zhihu.com/p/6952876071、安装LLaMAFactorygi
- Stacking算法:集成学习的终极武器
civilpy
算法集成学习机器学习
Stacking算法:集成学习的终极武器在机器学习的竞技场中,集成学习方法以其卓越的性能而闻名。其中,Stacking(堆叠泛化)作为一种高级集成技术,更是被誉为“集成学习的终极武器”。本文将带你深入了解Stacking算法的原理和实现,并提供一些实战技巧和最佳实践。1.Stacking算法原理探秘Stacking算法的核心思想是训练多个不同的基模型,并将它们的预测结果作为新模型的输入特征,以此来
- Android 车联网——汽车系统介绍(附2)
c小旭
Android车联网android车联网
汽车系统指的是由多个模块或组件组成的系统,如发动机系统、制动系统、空调系统等,这些系统通常由多个ECU协同工作来完成特定的任务。一、汽车系统1、防抱死制动系统ABS(Anti-lockBrakingSystem,防抱死制动系统)是一项重要的汽车安全技术,其主要功能是在车辆紧急制动时防止车轮完全锁死(抱死)。ABS系统通过自动控制制动力,使得车轮在制动过程中仍然能够保持一定的转动,从而避免因车轮抱死
- MiniMind
亚伯拉罕·黄肯
大模型人工智能
数据集分类:tokenizer训练集:这个数据集用于训练分词器(tokenizer),是文本处理中的一个重要步骤。它可以帮助模型更好地理解文本数据的结构。Pretrain数据:这是用于预训练模型的数据集,它可以帮助模型学习语言的基本结构和特征。SFT数据:SFT(SupervisedFine-Tuning)数据集,用于监督式微调,可以提高模型在特定任务上的性能。DPO数据1和DPO数据2:这两个数
- 集成学习(上):Bagging集成方法
万事可爱^
机器学习修仙之旅#监督学习集成学习机器学习人工智能Bagging随机森林
一、什么是集成学习?在机器学习的世界里,没有哪个模型是完美无缺的。就像古希腊神话中的"盲人摸象",单个模型往往只能捕捉到数据特征的某个侧面。但当我们把多个模型的智慧集合起来,就能像拼图一样还原出完整的真相,接下来我们就来介绍一种“拼图”算法——集成学习。集成学习是一种机器学习技术,它通过组合多个模型(通常称为“弱学习器”或“基础模型”)的预测结果,构建出更强、更准确的学习算法。这种方法的主要思想是
- 直方图梯度提升:大数据时代的极速决策引擎
万事可爱^
大数据机器学习深度学习直方图梯度提升GBDT算法
一、为什么需要直方图梯度提升?在Kaggle竞赛的冠军解决方案中,超过70%的获奖方案都使用了梯度提升算法。但当数据量突破百万级时,传统梯度提升树(GBDT)面临三大致命瓶颈:训练耗时剧增:每个特征的分割点计算都需要全量数据排序内存消耗爆炸:存储排序后的特征值需要额外空间处理效率低下:无法有效利用现代CPU的多核特性而梯度提升决策树(GBDT)作为集成学习的代表算法,通过迭代构建决策树实现预测能力
- StarRocks 排查单副本表
Shyllin
StarRocksStarRocks
文章目录StarRocks排查单副本表方式1查询元数据,检查分区级的副本数方式2SHOWPARTITIONS命令查看ReplicationNum修改副本数命令StarRocks排查单副本表方式1查询元数据,检查分区级的副本数#方式一查询元数据,检查分区级的副本数withv_tmp1as(selectTABLE_ID,PARTITION_ID,tablet_id,count(*)ascntfromi
- 【集成学习】:Stacking原理以及Python代码实现
Geeksongs
机器学习python机器学习深度学习人工智能算法
Stacking集成学习在各类机器学习竞赛当中得到了广泛的应用,尤其是在结构化的机器学习竞赛当中表现非常好。今天我们就来介绍下stacking这个在机器学习模型融合当中的大杀器的原理。并在博文的后面附有相关代码实现。总体来说,stacking集成算法主要是一种基于“标签”的学习,有以下的特点:用法:模型利用交叉验证,对训练集进行预测,从而实现二次学习优点:可以结合不同的模型缺点:增加了时间开销,容
- 使用Seaborn绘制水平小提琴图
YOUFDJ
python开发语言Python
使用Seaborn绘制水平小提琴图水平小提琴图是一种常用的数据可视化工具,可以用于展示不同类别之间的分布情况。在Python中,我们可以使用Seaborn库的catplot函数来轻松地绘制水平小提琴图。本文将介绍如何使用Seaborn绘制水平小提琴图,并附带相应的源代码示例。首先,确保你已经安装了Seaborn库。如果没有安装,可以使用以下命令在命令行中安装:pipinstallseaborn安装
- Python文件与格式化:编程世界的“读写之道“(技术深挖版)
被窝妄想家
python进阶指南python数据库开发语言
一、文件操作:Python的"读写之眼"1.1文件基础哲学在计算机世界中,文件就像一本本等待翻阅的典籍。Python的open()函数如同手持放大镜,让我们能精确控制阅读和书写:#经典打开模式组合withopen("data.txt","r+",encoding="utf-8")asf:#r+模式:可读可写,文件指针初始位置在开头content=f.read(10)#读取前10个字节f.seek(
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla