Pytorch TensorRT

知乎上,说的也不错:

https://zhuanlan.zhihu.com/p/88318324

https://blog.csdn.net/qq_38003892/article/details/89314108

支持tensorrt,c++,也不难

https://github.com/clancylian/retinaface

这个待试:

https://github.com/RizhaoCai/PyTorch_ONNX_TensorRT

yolov3的还没试

https://github.com/Rapternmn/PyTorch-Onnx-Tensorrt

 

1.torch2trt

https://www.ctolib.com/amp/NVIDIA-AI-IOT-torch2trt.html

 

https://github.com/DocF/YOLOv3-Torch2TRT

https://github.com/traveller59/torch2trt

像官方代码:

https://github.com/NVIDIA-AI-IOT/torch2trt

 

import torch
from torch2trt import torch2trt
from torchvision.models.alexnet import alexnet

# create some regular pytorch model...
model = alexnet(pretrained=True).eval().cuda()

# create example data
x = torch.ones((1, 3, 224, 224)).cuda()

# convert to TensorRT feeding sample data as input
model_trt = torch2trt(model, [x])

Execute

We can execute the returned TRTModule just like the original PyTorch model

y = model(x)
y_trt = model_trt(x)

# check the output against PyTorch
print(torch.max(torch.abs(y - y_trt)))

Save and load

We can save the model as a state_dict.

torch.save(model_trt.state_dict(), 'alexnet_trt.pth')

We can load the saved model into a TRTModule

from torch2trt import TRTModule

model_trt = TRTModule()

model_trt.load_state_dict(torch.load('alexnet_trt.pth'))

Models

We tested the converter against these models using the test.sh script. You can generate the results by calling

 

2.Pytorch通过保存为ONNX模型转TensorRT5

这是另一篇博客:有开源代码

https://www.cnblogs.com/darkknightzh/p/11332155.html

https://github.com/darkknightzh/TensorRT_pytorch



1 Pytorch以ONNX方式保存模型
    def saveONNX(model, filepath):
        '''
        保存ONNX模型
        :param model: 神经网络模型
        :param filepath: 文件保存路径
        '''
        
        # 神经网络输入数据类型
        dummy_input = torch.randn(self.config.BATCH_SIZE, 1, 28, 28, device='cuda')
        torch.onnx.export(model, dummy_input, filepath, verbose=True)

2 利用TensorRT5中ONNX解析器构建Engine
    def ONNX_build_engine(onnx_file_path):
        '''
        通过加载onnx文件,构建engine
        :param onnx_file_path: onnx文件路径
        :return: engine
        '''
        # 打印日志
        G_LOGGER = trt.Logger(trt.Logger.WARNING)

        with trt.Builder(G_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, G_LOGGER) as parser:
            builder.max_batch_size = 100
            builder.max_workspace_size = 1 << 20

            print('Loading ONNX file from path {}...'.format(onnx_file_path))
            with open(onnx_file_path, 'rb') as model:
                print('Beginning ONNX file parsing')
                parser.parse(model.read())
            print('Completed parsing of ONNX file')

            print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
            engine = builder.build_cuda_engine(network)
            print("Completed creating Engine")

            # 保存计划文件
            # with open(engine_file_path, "wb") as f:
            #     f.write(engine.serialize())
            return engine

3 构建TensorRT运行引擎进行预测
    def loadONNX2TensorRT(filepath):
        '''
        通过onnx文件,构建TensorRT运行引擎
        :param filepath: onnx文件路径
        '''
        # 计算开始时间
        Start = time()

        engine = self.ONNX_build_engine(filepath)

        # 读取测试集
        datas = DataLoaders()
        test_loader = datas.testDataLoader()
        img, target = next(iter(test_loader))
        img = img.numpy()
        target = target.numpy()

        img = img.ravel()

        context = engine.create_execution_context()
        output = np.empty((100, 10), dtype=np.float32)

        # 分配内存
        d_input = cuda.mem_alloc(1 * img.size * img.dtype.itemsize)
        d_output = cuda.mem_alloc(1 * output.size * output.dtype.itemsize)
        bindings = [int(d_input), int(d_output)]

        # pycuda操作缓冲区
        stream = cuda.Stream()
        # 将输入数据放入device
        cuda.memcpy_htod_async(d_input, img, stream)
        # 执行模型
        context.execute_async(100, bindings, stream.handle, None)
        # 将预测结果从从缓冲区取出
        cuda.memcpy_dtoh_async(output, d_output, stream)
        # 线程同步
        stream.synchronize()

        print("Test Case: " + str(target))
        print("Prediction: " + str(np.argmax(output, axis=1)))
        print("tensorrt time:", time() - Start)

        del context
        del engine
 

你可能感兴趣的:(torch,onnx)