nlp数据增强,中文数据增强包,一键中文数据增强

NLP Chinese Data Augmentation 一键中文数据增强工具

使用:pip install nlpcda

开源不易,欢迎 star

pypi:https://pypi.org/project/nlpcda/


介绍

一键中文数据增强工具,支持:

  • 1.随机实体替换
  • 2.近义词
  • 3.近义近音字替换
  • 4.随机字删除(内部细节:数字时间日期片段,内容不会删)
  • 5.新增:NER类 BIO 数据增强
  • 6.新增 随机置换邻近的字:研表究明,汉字序顺并不定一影响文字的阅读理解<<是乱序的

经过细节特殊处理,尽量保证不改变原文语义。即使改变也能被猜出来、能被猜出来、能被踩出来、能被菜粗来、被菜粗、能菜粗来

计划中的未来内容

  • 基于LaserTagger的文本复述,输入A,用句子B去复述它,B尽量和A语义一致
  • 翻译互转实现的增强
  • 基于Word2Vec、BERT等词向量的词语近距离的替换、MASK猜测置换
  • 引入TF-IDF、TextRank等,可以选择:替换/不替换关键词

意义

  • 在不改变原文语义的情况下,生成指定数量的训练语料文本
  • 对NLP模型的泛化性能、对抗攻击、干扰波动,有很好的提升作用
  • 参考比赛(本人用此策略+base bert拿到:50±/1000):https://www.biendata.com/competition/2019diac/

API

1.随机(等价)实体替换

参数:

  • base_file :缺省时使用内置(公司)实体。对公司实体进行替换

    是文本文件路径,内容形如:
    实体1
    实体2

    实体n

  • create_num=3 :返回最多3个增强文本
  • change_rate=0.3 : 文本改变率
  • seed : 随机种子
from nlpcda import Randomword

test_str = '''这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击'''

smw = Randomword(create_num=3, change_rate=0.3)
rs1 = smw.replace(test_str)

print('随机实体替换>>>>>>')
for s in rs1:
    print(s)
'''
随机实体替换>>>>>>
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
这是个实体:长兴国际;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
这是个实体:浙江世宝;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
'''

2.随机同义词替换

参数:

  • base_file :缺省时使用内置同义词表,你可以设定/自己指定更加丰富的同义词表:

    是文本文件路径,内容形如(空格隔开):
    Aa01A0 人类 生人 全人类
    id2 同义词b1 同义词b2 … 同义词bk

    idn 同义词n1 同义词n2\

  • create_num=3 :返回最多3个增强文本
  • change_rate=0.3 : 文本改变率
  • seed : 随机种子
from nlpcda import Similarword

test_str = '''这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击'''

smw = Similarword(create_num=3, change_rate=0.3)
rs1 = smw.replace(test_str)

print('随机同义词替换>>>>>>')
for s in rs1:
    print(s)

'''
随机同义词替换>>>>>>
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数量增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;斯nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
'''


3.随机近义字替换

参数:

  • base_file :缺省时使用内置【同义同音字表】,你可以设定/自己指定更加丰富的同义同音字表:

    是文本文件路径,内容形如(空格隔开):
    de 的 地 得 德 嘚 徳 锝 脦 悳 淂 鍀 惪 恴 棏
    拼音2 字b1 字b2 … 字bk

    拼音n 字n1 字n2\

  • create_num=3 :返回最多3个增强文本
  • change_rate=0.3 : 文本改变率
  • seed : 随机种子
from nlpcda import Homophone

test_str = '''这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击'''

smw = Homophone(create_num=3, change_rate=0.3)
rs1 = smw.replace(test_str)

print('随机近义字替换>>>>>>')
for s in rs1:
    print(s)

'''
随机近义字替换>>>>>>
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
这是个实体:58同城;今填是2020年3月8日11:40,天气晴朗,天气很不错,空气痕好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
鷓是个实体:58同乘;今天是2020年3月8日11:40,天迄晴朗,天气很不错,空气很儫,不差;这个nlpcad包,用于方便一键数据增强,犐有效增牆NLP模型的橎化性能、减少波动、抵抗对抗攻击
'''

4.随机字删除

参数:

  • create_num=3 :返回最多3个增强文本
  • change_rate=0.3 : 文本改变率
  • seed : 随机种子
from nlpcda import RandomDeleteChar

test_str = '''这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击'''

smw = RandomDeleteChar(create_num=3, change_rate=0.3)
rs1 = smw.replace(test_str)

print('随机字删除>>>>>>')
for s in rs1:
    print(s)

'''
随机字删除>>>>>>
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气,不差;这个nlpcad包用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗
个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型泛化性能、减少波动、抵抗对抗
'''

5.NER命名实体 数据增强

输入标注好的NER数据目录,和需要增强的标注文件路径,和增强的数量,即可一键增强

Ner类参数:

  • ner_dir_name=‘ner_data’ : 在ner数据放在ner_data目录下(里面很多.txt)
  • ner_dir_name提供的目录下是各种标注数据文件,文件内容以标准的NER 的BIO格式分开:

字1 \t TAG

北 \t B-LOC

京 \t I-LOC

今 \t O

天 \t O

很 \t O

热 \t O

。 \t O

  • ignore_tag_list=[‘O’] : 数据里面O标签的不需要管
  • data_augument_tag_list=[‘P’, ‘LOC’] : 只对P、LOC标签的实体做增强
  • augument_size=3 : 每条标注数据,最多新增强数量
  • seed=0 : 随机种子/ 可缺省

调用函数augment()参数

  • file_name: 1条标注训练文件的路径,如0.txt
  • ner.augment(file_name=‘0.txt’)

例子:

from nlpcda import Ner

ner = Ner(ner_dir_name='ner_data',
        ignore_tag_list=['O'],
        data_augument_tag_list=['P', 'LOC','ORG'],
        augument_size=3, seed=0),
data_sentence_arrs, data_label_arrs = ner.augment(file_name='0.txt')
# 3条增强后的句子、标签 数据,len(data_sentence_arrs)==3
# 你可以写文件输出函数,用于写出,作为后续训练等
print(data_sentence_arrs, data_label_arrs)

6.随机置换邻近的字

  • char_gram=3:某个字至于邻近的3个字交换
  • 内部细节:遇到数字,符号等非中文,不会交换
from nlpcda import CharPositionExchange

ts = '''这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击'''
smw = CharPositionExchange(create_num=3, change_rate=0.3,char_gram=3,seed=1)
rs=smw.replace(ts)
for s in rs:
    print(s)

'''
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
这实个是体:58城同;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,差不;这个nlpcad包,便用一数方增键强据于,增有效可强NLP模型性泛化的能、动少减波、抵对攻抗抗击
这是个体实:58城同;今是天2020年3月8日11:40,朗气晴天,天气很错不,空好很气,不差;个这nlpcad包,方便键一据增用数于强,可有效强增NLP模型的性化泛能、动减波少、抗抗击抵对攻
'''

添加自定义词典

用于使用之前,增加分词效果

from nlpcda import Randomword
from nlpcda import Similarword
from nlpcda import Homophone
from nlpcda import RandomDeleteChar
from nlpcda import Ner
from nlpcda import CharPositionExchange

Randomword.add_word('小明')
Randomword.add_words(['小明','小白','天地良心'])
# Similarword,Homophone,RandomDeleteChar 同上

你可能感兴趣的:(NLP)