- MySQL算法篇(一)
先睡
算法
Hash算法,也称为哈希算法或散列算法,是一种将任意长度的输入(如文本、图片等)通过某种规则转换成固定长度的输出的算法。这个输出通常被称为哈希值、哈希码或哈希摘要。以下是一些关于哈希算法的关键点:不可逆性:理论上,从哈希值不能逆向推导出原始输入数据。确定性:对于同一个输入,无论何时何地使用相同的哈希算法,都会得到相同的哈希值。快速计算:哈希算法通常设计得非常高效,可以快速计算出哈希值。抗冲突性:不
- 关于非线性优化小记
文弱_书生
乱七八糟算法
非线性优化(NonlinearOptimization)1.什么是非线性优化?非线性优化是指目标函数或约束条件中至少有一个是非线性的优化问题。它广泛应用于工程、经济、人工智能、机器学习等领域,用于求解最优解的问题。非线性优化通常可以表示为以下数学形式:minxf(x)或maxxf(x)\min_{x}f(x)\quad\text{或}\quad\max_{x}f(x)xminf(x)或xmax
- 代码随想录算法训练营第三十七天| 动态规划01
Rachela_z
算法动态规划
509.斐波那契数很简单的动规入门题,但简单题使用来掌握方法论的,还是要有动规五部曲来分析。代码随想录视频:手把手带你入门动态规划|LeetCode:509.斐波那契数_哔哩哔哩_bilibili动态规划五部曲:确定dp数组(dptable)以及下标的含义确定递推公式dp数组如何初始化确定遍历顺序举例推导dp数组classSolution:deffib(self,n:int)->int:F=[0,
- Leetcode32 最长有效括号深度解析
八股文领域大手子
数据库mysqljavasqlredis
问题描述找出字符串s中最长的有效括号子串的长度。核心思路动态规划:定义dp[i]为以字符s[i]结尾的最长有效括号子串长度。分情况讨论:根据当前字符是否为)以及前面的字符情况,推导状态转移方程。状态转移方程详解Case1:当前字符)与前一个字符(直接匹配场景:形如...()的结构。转移方程:if(s.charAt(i-1)=='('){dp[i]=dp[i-2]+2;//前i-2个字符的有效长度+
- 群体智能优化算法-旗鱼优化算法 (Sailfish Optimizer, SFO,含Matlab源代码)
HR Zhou
算法matlab开发语言群体智能优化优化
摘要旗鱼优化算法(SailfishOptimizer,SFO)是一种模拟旗鱼(Sailfish)和沙丁鱼(Sardine)之间捕食关系的新型元启发式算法。通过在搜索过程中模拟旗鱼对沙丁鱼的捕食行为,以及沙丁鱼群的逃逸与防御机制,SFO平衡了全局探索与局部开发,在处理复杂优化问题时具有良好的收敛性能。本文提供了SFO的核心思路并提供了完整MATLAB代码及详细中文注释,以帮助读者快速理解并应用该算法
- 机器学习 [白板推导](三)[线性分类]
神齐的小马
机器学习分类人工智能
4.线性分类4.1.线性分类的典型模型硬分类:输出结果只有0或1这种离散结果;感知机线性判别分析Fisher软分类:会输出0-1之间的值作为各个类别的概率;概率生成模型:高斯判别分析GDA、朴素贝叶斯,主要建模的是p(x⃗,y)p(\vec{x},y)p(x,y)概率判别模型:逻辑回归,主要建模的是p(y∣x⃗)p(y|\vec{x})p(y∣x)4.2.感知机4.2.1.基本模型 模型:f(x
- 遗传算法与深度学习实战(2)——生命模拟及其应用
盼小辉丶
遗传算法与深度学习实战深度学习人工智能遗传算法
遗传算法与深度学习实战(2)——生命模拟及其应用0.前言1.康威生命游戏1.1康威生命游戏的规则1.2实现康威生命游戏1.3空间生命和智能体模拟2.实现生命模拟3.生命模拟应用小结系列链接0.前言生命模拟是进化计算的一个特定子集,模拟了自然界中所观察到的自然过程,例如粒子或鸟群的聚集方式。生命模拟只是用来探索和优化问题的模拟形式之一,还有很多其他形式的模拟,可以更好地建模各种过程,但它们都源于康威
- 解决约束多目标优化问题的新方法:MOEA/D-DAE算法深度解析
木子算法
多目标优化人工智能算法多目标人工智能
解决约束多目标优化问题的新方法:MOEA/D-DAE算法深度解析在工程优化、机器学习等众多领域,约束多目标优化问题(CMOPs)广泛存在。传统方法在处理这类问题时,常因可行区域不连通或约束违反局部极小点陷入停滞。近期,IEEETransactionsonEvolutionaryComputation上的一篇论文提出了一种新颖的解决方案——MOEA/D-DAE算法,通过结合检测-逃逸策略(DAE)和
- ROS2——C++新特性
A_lvvx
ROS2c++开发语言ROS2
1.自动类型推导auto,可以自行将定义的变量赋值为整形、浮点型、字符型.....2.智能指针c++11提供了三种类型的智能指针:std::unique_ptr、std::shared_ptr和std::weak_ptr。在同一个程序中将某个资源使用智能共享指针进行管理,那么该数据无论在多少个函数内进行传递,都不会发生资源的复制,运行效率会大大提高。当所有的程序使用完毕后,还会自动收回,不会造成内
- 列表推导式_Python教程
曹操贪慕小乔
python基础pythonnumpy算法
内容摘要Python中存在一种特殊的表达式,名为推导式,它的作用是将一种数据结构作为输入,再经过过滤计算等处理,最后输出另一种数据结构。根据数据结构的不同会被分为列表推导式、文章正文Python中存在一种特殊的表达式,名为推导式,它的作用是将一种数据结构作为输入,再经过过滤计算等处理,最后输出另一种数据结构。根据数据结构的不同会被分为列表推导式、集合推导式和字典推导式。我们先着重来介绍最常使用的列
- 模拟退火算法详解
琛哥的程序
算法模拟退火算法机器学习
一、引言模拟退火算法(SimulatedAnnealing,简称SA)是一种通用概率型优化算法,用来在一个大的搜寻空间内找寻问题的最优解。其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。二、算法原理物理退火过程加温过程
- 模型可解释性:基于博弈论的SHAP值计算与特征贡献度分析(附PyTorch/TensorFlow实现)
燃灯工作室
Aipytorchtensorflow人工智能
一、技术原理与数学推导(含典型案例)1.1Shapley值基础公式SHAP值基于合作博弈论中的Shapley值,计算公式为:ϕi=∑S⊆F∖{i}∣S∣!(∣F∣−∣S∣−1)!∣F∣![f(S∪{i})−f(S)]\phi_i=\sum_{S\subseteqF\setminus\{i\}}\frac{|S|!(|F|-|S|-1)!}{|F|!}[f(S\cup\{i\})-f(S)]ϕi=S
- 基于时间序列预测的推理服务弹性扩缩容实战指南:(行业案例+数学推导+源码解析)
燃灯工作室
Ai计算机视觉语音识别目标检测机器学习人工智能
技术原理(数学公式)整体架构请求量预测→扩缩容决策→资源配置动态调整三阶段闭环,周期为5-30分钟核心预测模型(时间序列预测)LSTM预测公式(CSDN兼容格式):$$h_t=\text{LSTM}(x_t,h_{t-1})\\\hat{y}_{t+1}=W_h\cdoth_t+b_h$$其中Wh∈Rd×1W_h\in\mathbb{R}^{d\times1}Wh∈Rd×1为权重矩阵,ddd为隐藏
- (二分 数学推导区间 两个数组的距离值)leetcode 1385
维齐洛波奇特利(male)
算法
数学推导:设arr1[i]=x则|x-arr2[j]|x+d而这个数t有三种可能1.刚好等于x-d不满足条件2.大于x-d但是小于等于x+d不满足条件3.大于x+d满足条件那arr2中小于t的值呢,因为t>=x-d所以arr2&arr1,vector&arr2,intd){sort(arr2.begin(),arr2.end());intans=0;for(autox:arr1){autot=ra
- OTSU算法 (大津算法)理解&代码
当代女大学生
机器学习python计算机视觉算法
OTSU算法:对图像进行二值化的算法介绍OTSU算法是一种自适应的阈值确定的方法,又称大津阈值分割法,是最小二乘法意义下的最优分割。它是按图像的灰度特性,将图像分成背景和前景两部分。因方差是灰度分布均匀性的一种度量,背景和前景之间的类间方差越大,说明构成图像的两部分的差别越大,当部分前景错分为背景或部分背景错分为前景都会导致两部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。从大津法的原
- OTSU算法(大津算法)
天行者@
算法opencv人工智能二值化
Otsu算法(大津算法)是一种经典的图像二值化方法,其核心是通过最大化类间方差自动确定全局阈值。以下是其具体工作原理和步骤:1.基本思想假设图像由前景(目标)和背景两部分组成,且两者的灰度分布存在明显差异(直方图呈现双峰)。Otsu算法通过寻找一个阈值,使得前景与背景之间的类间方差最大,从而将图像分割为二值图。2.数学推导(1)计算灰度直方图统计图像中每个灰度值的像素个数,得到直方图h[i](i为
- 图像拼接-UDIS详细推导和精读Unsupervised Deep Image Stitching: ReconstructingStitched Features to Images
cccc来财
算法计算机视觉深度学习
无监督粗对齐1.基于消融的策略主要是为了找到重叠区,去除无效区2.拼接域的TransformerLayer无监督图像重建1.低分辨率变形单应性变换仅能表示同一深度的空间变换,在实际的图像拼接任务中,由于输入图像的多样性和复杂性,经过第一阶段的粗对齐后,图像往往无法完全对齐。为了让网络能够感知到这些错位区域,特别是在高分辨率和大视差的情况下,设计了低分辨率变形分支,先在低分辨率下对图像进行处理和学习
- 强化学习-Chapter2-贝尔曼方程
Rsbs
算法机器学习概率论
强化学习-Chapter2-贝尔曼方程贝尔曼方程推导继续展开贝尔曼方程的矩阵形式状态值的求解动作价值函数与状态价值函数的关系贝尔曼方程推导Vπ(s)=E[Gt∣St=s]=E[rt+1+(γrt+2+…)∣St=s]=E[rt+1+γGt+1∣St=s]=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(Rs→s′a+γE[Gt+1∣St+1=s′])=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(R
- 数学建模之数学模型-3:动态规划
^ω^宇博
数学模型数学建模动态规划算法
文章目录动态规划基本概念阶段状态决策策略状态转移方程指标函数最优指标函数动态规划的求解前向算法后向算法二者比较应用案例一种中文分词的动态规划模型摘要引言动态规划的分词模型问题的数学描述消除状态的后效性选择优化条件算法描述和计算实例算法的效率分析和评价结束语参考文献动态规划基本概念一个多阶段决策过程最优化问题的动态规划模型包括以下666个要素:以下是对动态规划中阶段、状态、决策、策略、状态转移方程、
- 【动态规划1】
m0_46150269
动态规划算法
力扣509.斐波那契数链接:link思路这是一道经典的动态规划DP题,做动态有5步:1.确定dp[i]含义,表示第i个数的斐波那契数值是dp[i]2.dp数组初始化3.确定递推公式4.确定遍历顺序,从递推公式可以知道dp[i]是依赖dp[i-1]和dp[i-2],那么遍历的顺序一定是从前到后遍历的5.举例推导,草稿完成classSolution{publicintfib(intn){if(n<=1
- 如何在Futter开发中做性能优化?
Ever69
性能优化
目录1.避免不必要的Widget重建问题:频繁调用setState()导致整个Widget树重建。优化策略:2.高效处理长列表问题:ListView一次性加载所有子项导致内存暴涨。优化策略:3.图片加载优化问题:加载高分辨率图片导致内存溢出。优化策略:4.动画性能优化问题:复杂动画导致UI卡顿。优化策略:5.状态管理优化问题:全局状态变化导致无关Widget重建。优化策略:6.避免阻塞UI线程问题
- 参数化曲线——参数三次样条曲线(实例)
Alpha狼霸
线性代数矩阵机器学习算法机器人数学建模数据分析
问题及相关理论给定空间中n+1个数据点pi(i=0,1,...,n)\bm{p}_i(i=0,1,...,n)pi(i=0,1,...,n),如何构造一条通过这些数据点并满足二阶连续的三次样条曲线?参数化曲线——参数三次样条曲线(1)介绍了数据点的参数化方法。参数化曲线——参数三次样条曲线(2)介绍了埃尔米特基形式的三次多项式曲线及其域变换。参数化曲线——参数三次样条曲线(3)推导了满足二阶连续的
- 推理大模型:技术解析与未来趋势全景
时光旅人01号
深度学习人工智能pythonpytorch神经网络
1.推理大模型的定义推理大模型(ReasoningLLMs)是专门针对复杂多步推理任务优化的大型语言模型,具备以下核心特性:输出形式创新展示完整逻辑链条(如公式推导、多阶段分析)任务类型聚焦擅长数学证明、编程挑战、多模态谜题等深度逻辑任务训练方法升级融合强化学习、思维链(CoT)、测试时计算扩展等技术2.主流推理大模型图谱2.1国际前沿模型OpenAIo1系列内部生成"思维链"机制数学/代码能力标
- 开源项目的企业级性能优化服务:高价值咨询
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题《开源项目的企业级性能优化服务:高价值咨询》关键词:开源项目、企业级性能优化、性能评估、性能瓶颈、高可用性、性能优化服务、案例研究、优化策略摘要:本文章深入探讨了开源项目在企业环境中的性能优化问题,详细介绍了企业级性能优化服务的核心概念、方法、策略和实战案例。文章结构清晰,内容丰富,旨在为企业和开发人员提供高价值的性能优化咨询。目录第一部分:背景与核心概念第1章:开源项目的企业级性能优化概
- GAN生成对抗网络小记
文弱_书生
乱七八糟生成对抗网络人工智能神经网络
生成对抗网络(GAN)深入解析:数学原理与优化生成对抗网络(GenerativeAdversarialNetwork,GAN)是一个基于博弈论的深度学习框架,通过生成器(G)和判别器(D)之间的对抗训练,生成高度逼真的数据。其核心思想是让GGG生成伪造数据以欺骗DDD,而DDD则努力分辨真实数据与伪造数据。GAN在理论上可以看作一个极小极大(Minimax)优化问题。1.GAN的数学公式1.1生成
- 深度学习 常见优化器
Humingway
深度学习人工智能
一、基础优化器随机梯度下降(SGD)•核心:∇θJ(θ)=η*∇θJ(θ)•特点:学习率固定,收敛路径震荡大•适用场景:简单凸优化问题•改进方向:动量加速二、动量系优化器2.SGDwithMomentum•公式:v_t=γv_{t-1}+η∇θJ(θ)•效果:平滑梯度更新,加速收敛•经典参数:γ=0.9(多数场景推荐)三、自适应学习率家族3.Adagrad•创新:∇θJ(θ)_t=∇θJ(θ)/(
- 探地雷达F-K偏移算法详解与Python实现
T2ccc
探地雷达算法python
探地雷达F-K偏移算法详解与Python实现文章目录探地雷达F-K偏移算法详解与Python实现前言一、探地雷达成像原理与偏移的必要性二、F-K偏移的基本原理2.1波的传播与频率-波数域2.2F-K偏移的基本思路三、F-K偏移算法的数学推导3.1二维傅里叶变换3.2波场外推3.3Stolt映射(核心步骤)3.4逆变换四、F-K偏移的Python代码实现4.1辅助函数和数据准备4.2F-K偏移核心函
- 多目标优化算法之NSGA-II、NSGA-III(附Matlab免费代码)
优化算法侠Swarm-Opti
智能优化算法算法matlab开发语言优化算法NSGA
引言NSGA-II和NSGA-III都是非支配排序遗传算法的变种,用于解决多目标优化问题,但它们在多个方面存在差异。相同点基本框架相似:两者都基于遗传算法的框架,包括初始化种群、非支配排序、选择、交叉和变异等操作非支配排序:都采用非支配排序技术,将种群中的个体划分为不同的前沿,识别非支配解集不同点适用目标数量不同:NSGA-II:适用于相对较少的目标数量,通常在2到4个目标之间,在处理较少目标的问
- 信号处理抽取多项滤波的数学推导与仿真
jz_ddk
信号处理python算法
昨天的《信号处理之插值、抽取与多项滤波》,已经介绍了插值抽取的多项滤率,今天详细介绍多项滤波的数学推导,并附上实战仿真代码。一、数学变换推导1.多相分解的核心思想将FIR滤波器的系数h(n)h(n)h(n)按相位分组,每组对应输入信号的不同抽样相位。通过分相、滤波、重组,实现与原FIR等效的处理。2.数学变换推导FIR滤波器的系统函数可表示为:H(z)=∑n=0N−1h(n)z−nH(z)=\su
- 深入探讨C++模板编程:类型推导与实例化
王大帅爱钢炼
模板编程类型推导模板参数函数指针类模板
背景简介C++模板编程是C++语言中一个强大而复杂的特性,它允许程序员编写与数据类型无关的代码。本篇博客将深入探讨C++模板编程中的一些关键概念,如类型推导、模板参数、通用构造器、函数类型与函数指针、非模板基类以及模板位置等。typename和模板参数在模板编程中,typename关键字不仅可以用来指定模板参数的类型,还可以用来解决依赖类型的问题。例如,在声明一个非类型模板参数时,使用typena
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息